MIXTURE MODELS
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Maximum likelihood framework Bayesian framework
MODEL FITTING
Expectation-maximization algorithm MCMC algorithm/Gibbs sampling
output: maximum likelihood estimates of w and 6§ output: a sample from the posterior distribution
procedure: p(w, 8, c|X)
@, 0 « initial values procedure:
repeat set priors p(w) and p(f) on w and 6
®,0 « argmax_ , Q(w, 0|, ) convenient: (wy,...,ws) ~ Dirichlet(ay, ..., ax)
until convergence
repeat
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DETERMINING THE NUMBER OF COMPONENTS
For each candidate model M compute its Bayesian With

information criterion value K — upper bound on # components,
K* — best guess for actual # components K,
BIC(M) = —2log L(fpm) + ra logn, solve
K* = alog o=t
where for a.
L) = L(X|Onm, Or1), Set the prior p(w) ~ Dirichlet(2, ..., 2).
rym — # independent parameters in the model. Fit a model with K components.
Posterior distribution for K obtained by counting
Select the model with the lowest BIC value. the number of unique values assumed by indicators

¢; per iteration of Gibbs sampling.

CLASSIFICATION WITH MIXTURE MODELS
Unsupervised: fit a model, classify as ¢; = argmax;, v; (&, 6)

Semi-supervised: fit a model to the whole dataset, keeping v; ; constant on the training data;
for the test data, classify as ¢; = argmaxy, v; (&, 6)

Supervised: estimate ; by fitting gx to training data from class k; set @ = (#obs. in class k)/n;
for the test data, classify as ¢; = argmax;, v; (&, 6)



