
Univariate Time Series Analysis

basic notions autocovariance & autocorrelation

• stochastic process: a family {yt : t ∈ T } of ran-
dom variables

• weak-sense stationary (WSS) stochastic pro-
cess: a stochastic process {yt : t ∈ T } satisfying

1. there is µ < +∞ st E[yt] = µ for t ∈ T ,
2. cov(yt, ys) = cov(y0, y|t−s|) for t, s ∈ T ,
3. there is v < +∞ st Var[yt] = v for t ∈ T

• time series: a realization y1:T : = {y1, . . . , yT} of
a stochastic process

• autocovariance function

– γ(t, s) := cov(yt, ys)
– γ(h) := cov(yt, yt+h) //WSS SP

– γ̂(h) := 1
T

T−h∑
t=1

(yt+h − y)(yt − y) //sample

• autocorrelation function (ACF)

– ρ(t, s) := γ(t,s)√
γ(t,t)
√
γ(s,s)

– ρ(h) := γ(h)
γ(0) //WSS SP

– ρ̂(h) := γ̂(h)
γ̂(0) //sample

Partial autocorrelation

The partial autocorrelation function (PACF) of a zero-mean WSS process {yt} at lag h is defined as

φ(h, h) =

corr(yt+1, yt) = ρ(1) for h = 1,
corr(yt+h − ŷt+h, yt − ŷt) for h ≥ 2,

where ŷt = β1yt−1 + . . .+ βh−1yt−h+1 is the linear combination of {yt−1, . . . , yt−h+1} minimizing E[(yt − ŷt)2].

Time series transformations

• reducing variance: take log yt,
√
yt or y1/3

t ; al-
ternatively, use a Box-Cox transformation

y′t =

log yt, if λ = 0
(yλt − 1)/λ otherwise

with λ that makes the size of the seasonal variation
about the same across the whole series

• differencing: difference operator D is defined by
D yt = yt − yt−1, Dd yt = D(Dd−1 yt) and can
be used for detrending; taking y′t = Dd yt with
d ∈ {1, 2} should be sufficient

• seasonal differencing: to remove seasonal effect
for data with periodicity m, take y′t = yt − yt−m

• moving average smoothing: replacing origi-
nal observation with a weighted average of val-
ues around it: y′t :=

p∑
j=−q

ajyt+j, with the weights
summing up to one. Reduces periodicity, exposes
trend. Usually, is

– centered: p = q, and
– symmetric: aj = a−j.

To remove periodicity in data with period m, use
centered and symmetric, with

– ap = aq = 1
2m , aj = 1

m
for j /∈ {−q, q}, if

m = 2q,
– aj = 1

m
for every j, if m = 2q + 1.

Time series modelling and forecasting: selected methods

• AR(p), autoregressive process of order p

• MA(q), moving average process of order q

• ARMA(p, q), autoregressive moving average
model

• ARIMA(p, d, q), integrated ARMA(p, q)

• ARIMA(p, d, q)(P,D,Q)m, seasonal ARIMA

• ARIMAX(p, d, q)(P,D,Q)m, seasonal ARIMA
with exogenous variables

• exponential smoothing

• Bayesian models, e.g., normal dynamic linear
models (NDLMs)

• other, e.g., gradient boosting on regression trees,
neural networks (deep, recurrent, long short-term
memory), TBATS, ...

Univariate Time Series Modelling and Forecasting

AR(p) MA(q)

In autoregressive process AR(p) of order p every
value is a linear combination of previous p values:

yt =
p∑
i=1

φiyt−i + εt, εt ∼ N (0, v).

Suitable for stationary time series.
PACF(k) ≈ 0 for AR(p) and k > p.

In moving average MA(q) process of order q every
values is modelled as the sum of time series mean and
a linear combination of white noise error terms:

yt = µ+ εt +
q∑
i=1

θiεt−i, εt−i ∼ N (0, v).

Suitable for stationary time series.
ACF(k) ≈ 0 for MA(q) and k > q.

ARMA(p, q) ARIMA(p, d, q)

A combination of an autoregressive process of order p
and a moving average process of order q:

yt = µ+ εt +
p∑
i=1

φiyt−i +
q∑
i=1

θiεt−i, εt−i ∼ N (0, v).

Suitable for stationary time series.

Arises by applying ARIMA(p, q) to time series
y′t = Ddyt, i.e., to the original time series differenced
(detrended, “integrated”) d times:

y′t = µ′ + εt +
p∑
i=1

φiy
′
t−i +

q∑
i=1

θiεt−i, εt−i ∼ N (0, v).

Suitable for time series exhibiting trend but lacking
seasonal variations.

ARIMA(p, d, q)(P,D,Q)m ARIMAX(p, d, q)(P,D,Q)m

Seasonal ARIMA (also called SARIMA) tries to
capture seasonal behaviour by adding to ARIMA a
linear dependence of yt on yt−m, . . . , yt−Pm and on
εt−m, . . . , εt−Qm.
Suitable for time series exhibiting trend or seasonal
variations with period m.
Usually, P,Q ∈ {0, 1, 2} and D ∈ {0, 1}.
Warning: very long model fitting time even for a
couple thousands of observations.

Seasonal ARIMA with exogenous variables -
seasonal ARIMA that additionally includes a linear
regression term on some explanatory variables.
Suitable for time series exhibiting trend or seasonal
variations with period m.

simple exponential smoothing (SES) double exponential smoothing (DES)

In SES forecasted values are linear combinations of all
the values observed so far, with exponentially decaying
coefficients, controlled by a single parameter α ∈ (0, 1).
The most recent observations contribute the most; the
closer α is to one, the bigger their contributions when
compared with the contributions of more distant
observations.

ŷt+1|t = αyt + α(1− α)yt−1 + α(1− α)2yt−2 + . . . ,

or, in a weighted average form,

ŷt+1|t = αyt + (1− α)ŷt|t−1.

Suitable for stationary time series.
Flat forecast: ŷT+h|T = ŷT+1|T .

Or Holt’s linear trend method. Modification of
SES that allows for modelling linear trend behaviour:

ŷt+h|t = lt + hbt //forecast equation
lt = αyt + (1− α)(lt−1 + bt−1) //level equation
bt = β(lt − lt−1) + (1− β)bt−1 //trend equation

Here, lt and bt are level and trend slope estimates at
time t, and α and β are smoothing parameters for level
and trend, respectively. The level lt is a weighted
average of observed yt and one-step-ahead training
forecast, and bt is a weighted average of the estimated
trend at time t and the previous estimate of trend, bt−1.
Suitable for time series exhibiting linear trend but
lacking seasonal variations.

Univariate Time Series Modelling and Forecasting

damped trend smoothing triple exponential smoothing (tes)

A modification of DES, obtained by adding a new
parameter that dampens the trend to a constant in the
long run.

ŷt+h|t = lt + (φ+ φ2 + . . .+ φh)bt //forecast equation
lt = αyt + (1− α)(lt−1 + φbt−1) //level equation
bt = β(lt − lt−1) + (1− β)φbt−1 //trend equation

Equivalent to SES for φ = 0 and to DES for φ = 1;
with φ ∈ [0, 1], the forecast tends to lt + φ/(1− φ)bt as
h grows. In practice, φ ∈ [0.8, 0.98].
Suitable for time series exhibiting linear trend but
lacking seasonal variations.

Or Holt-Winters Exponential Smoothing.
Modification of DES that allows for modelling seasonal
behaviour. The form below is intended for additive
seasonal effect (i.e., roughly constant through the
series), and k is the integer part of (h− 1)/m.

ŷt+h|t = lt + hbt + st+h−m(k+1) //forecast equation
lt = α(yt − st−m) + (1− α)(lt−1 + bt−1) //level equation
bt = β(lt − lt−1) + (1− β)bt−1 //trend equation
st = γ(yt − lt−1 − bt−1) + (1− γ)st−m //seasonal
equation

The seasonal component st is a weighted average of the
current seasonal contribution and the seasonal
contribution m time periods ago.
Suitable for time series exhibiting trend or seasonal
variations with period m, with additive seasonal effect.

TES with multiplicative seasonal effect normal dynamic linear models (NDLMs)

When data suggests multiplicative seasonal effect, the
following form of TES should be used.

ŷt+h|t = (lt + hbt)st+h−m(k+1) //forecast equation
lt = αyt/st−m + (1− α)(lt−1 + bt−1) //level equation
bt = β(lt − lt−1) + (1− β)bt−1 //trend equation
st = γyt/(lt−1− bt−1) + (1−γ)st−m //seasonal equation

As previously, k in the above is the integer part of
(h− 1)/m.
Suitable for time series exhibiting trend or seasonal
variations with period m, with multiplicative seasonal
effect.

In their most general form NDLMs are specified as
follows.

yt = F T
t θt + vt, vt

iid∼ N (0, Vt) //observation equation
θt = Gtθt−1 + wt, wt

iid∼ N (0,Wt) //evolution equation
(θ0|D0) ∼ N (m0, C0) //conjugate prior

Here, F T
t ∈ Rk is the design matrix (of known values of

independent variables), θt ∈ Rk is the state/system
vector, GT

t ∈ Rk×k is the evolution matrix (known),
Vt ∈ R is the observational error and Wt ∈ R is the
system/evolution error. Forecast is computed as the
expected value of the forecast distribution, namely

ŷt+h|t = E[yt+h|Dt] = F T
t+hGt+h . . . Gt+1E[θt|Dt],

with Dt = {D0, y1:t} being the information available at
time t (D0 = {m0, C0}).
Suitable for all time series. Admits multiple seasonal
patterns as well as explanatory variables. Model fitting
is generally extremely fast, as the parameters of
distributions of interest are computed using simple
recurrence relations.

simple forecasting methods Neural networks

Näive method: ŷt+h|t = yt
Näive seasonal method: ŷt+h|t = yt+h−m(k+1), with k
being the integer part of (h− 1)/m
Simple average method: ŷt+h|t = (y1 + . . .+ yt)/t
Moving average method: ŷt+h|t = (yt−p + . . .+ yt)/p
Weighted moving average method:
ŷt+h|t = apyt−p+1 + . . .+ a0yt, with the weights
summing up to one

If there is enough training data, can use deep neural
networks, in particular networks using recurrent or
LSTM layers.

Univariate Time Series Forecasting: Python Code, 1/2

imports data preparation

import os
import numpy as np #==1.24.4
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.metrics import mean_squared_error
stationarity test
from statsmodels.tsa.stattools import adfuller
models
from statsmodels.tsa.arima.model import ARIMA
import pydlm # for NDLMs
import xgboost as xgb
import tensorflow as tf #==2.7.0
from statsmodels.tsa.holtwinters import
ExponentialSmoothing

monthly champagne sales, taken from Kaggle
input_path = os.path.join("data",
"perrin-freres-monthly-champagne.csv")
df = pd.read_csv(input_path)
df = df.rename(
columns={"Month": "month",

"Perrin Freres monthly champagne sales\
millions ?64-?72": "sales"})

df = df[:-2] # drop last two rows
df["month"] = pd.to_datetime(df["month"])
df = df.set_index("month")
p = 12 # periodicity
h = 24 # h for horizon
y_train = df["sales"][:-h]
y_test = df["sales"][-h:]

simple methods ARIMAX(p, d, q)(P,D,Q)m

1.1 naive seasonal method
df["naive_seasonal_forecast"] = np.nan
df["naive_seasonal_forecast"].iloc[-2*p:-p] = \
y_train[-p:].values
df["naive_seasonal_forecast"].iloc[-p:] = \
y_train[-p:].values
RMSE: 1014

1.2 weighted moving average
n_months = 12
weights = np.array(
[0.1**i for i in range(1, n_months + 1)])
weights = weights / weights.sum()
forecast_series = y_train[-n_months:].values
for t in range(h):

forecasted_value = \
forecast_series[-n_months:].dot(weights)
forecast_series = \
np.append(forecast_series, forecasted_value)

forecast = forecast_series[-h:]
df["wma_forecast"] = np.nan
df["wma_forecast"].iloc[-h:] = forecast
RMSE: 1020

2. SARIMA
model = ARIMA(
y_train,
order=(0, 1, 1), # p, d, q
seasonal_order=(1, 1, 1, 12), # P, D, Q, m
freq="MS", # month start
)
model.fit()
sarima_forecast = model.predict(

start=y_test.index.min(),
end=y_test.index.max()

)
df["sarima_forecast"] = np.nan
df["sarima_forecast"].iloc[-h:] = \
sarima_forecast
RMSE: 1517

Holt-Winters exponential smoothing NDLM

3. Holt-Winters smoothing,
multiplicative seasonality
model = ExponentialSmoothing(

y_train, damped_trend=False,
seasonal="mul", seasonal_periods=p

)
model.fit()
exp_smoothing_forecast = model.predict(

params=model.params,
start=y_test.index.min(),
end=y_test.index.max()

)
df["exp_smoothing_forecast"] = np.nan
df["exp_smoothing_forecast"].iloc[-h:] = \
exp_smoothing_forecast
RMSE: 936

4. normal dynamic linear model
model = pydlm.dlm(y_train)
add linear trend component
model = model + pydlm.trend(degree=1,
discount=0.96, name="trend", w=10.0)
add seasonal component
model = model + pydlm.seasonality(period=12,
discount=0.95, name="seas", w=10.0)
model.fit()
ndlm_mean_forecast, _ = model.predictN(

N=h,
date=model.n - 1)

df["ndlm_forecast"] = np.nan
df["ndlm_forecast"].iloc[-h:] = \
ndlm_mean_forecast
RMSE: 419

Univariate Time Series Forecasting: Python Code, 2/2

xgboost DNN

5. xgboost
model = xgb.XGBRegressor(
learning_rate=0.2,
max_depth=1,
n_estimators=50,
n_jobs=multiprocessing.cpu_count() // 2,
tree_method="hist",
objective="reg:squarederror",
)
use the value of sales 12 months ago as
the only predictor
df["sales_i-12"] = df["sales"].shift(12)
reg_cols = ["sales_i-12"]
model.fit(df[reg_cols].iloc[12:-h],
y_train[12:])
xgbt_forecast = model.predict(

df[reg_cols].iloc[-2 * p : -p]
)

xgbt_forecast = np.append(
xgbt_forecast,
model.predict(xgbt_forecast)
)
df["xgbt_forecast"] = np.nan
df["xgbt_forecast"].iloc[-h:] = xgbt_forecast
RMSE: 924

6. deep neural network; not very deep :)
window_size = 12
batch_size = 21
shuffle_buffer_size = 100
see next page for definition of the
windowed_dataset function
dataset = windowed_dataset(

y_train, window_size,
batch_size, shuffle_buffer_size,

)
model = tf.keras.models.Sequential(
[
tf.keras.layers.Dense(

10, input_shape=[window_size],
activation="relu"),

tf.keras.layers.Dense(
1, activation="relu"),

])
learning_rate = 1e-05
optimizer = tf.keras.optimizers.SGD(
learning_rate=learning_rate, momentum=0.9)
model.compile(loss=tf.keras.losses.Huber(),
optimizer=optimizer, metrics=["mse"])
model.fit(dataset, epochs=150)
see next page for forecasting using NNs;
huge variance in RMSE across 20 runs,
most likely due to tiny training dataset

RNN LSTM

7. RNN, recurrent neural network
window_size = 18
batch_size = 9
shuffle_buffer_size = 100
dataset = windowed_dataset(

y_train, window_size,
batch_size, shuffle_buffer_size,

)
model = tf.keras.models.Sequential(
[
tf.keras.layers.Lambda(

lambda x: tf.expand_dims(x, axis=-1),
input_shape=[window_size]

),
tf.keras.layers.SimpleRNN(

40, activation="relu",
return_sequences=True),

tf.keras.layers.SimpleRNN(
40, activation="relu"),

tf.keras.layers.Dense(1, activation="relu"),
])
learning_rate = 1e-05
optimizer = tf.keras.optimizers.SGD(
learning_rate=learning_rate, momentum=0.9)
model.compile(loss=tf.keras.losses.Huber(),
optimizer=optimizer, metrics=["mse"])
model.fit(dataset, epochs=150)
see next page for forecasting using NNs;
huge variance in RMSE across 20 runs,
most likely due to tiny training dataset

8. LSTM, long short-term memory neural network
window_size = 13
batch_size = 32
shuffle_buffer_size = 100
dataset = windowed_dataset(

y_train, window_size,
batch_size, shuffle_buffer_size,

)
model = tf.keras.models.Sequential(
[
tf.keras.layers.Conv1D(

filters=21, kernel_size=3,
strides=1, padding="causal",
activation="relu", input_shape=[window_size, 1]

),
tf.keras.layers.LSTM(21, return_sequences=True,

activation="relu"),
tf.keras.layers.LSTM(21, activation="relu"),
tf.keras.layers.Dense(1, activation="relu"),
]
)
learning_rate = 1e-05
optimizer = tf.keras.optimizers.SGD(
learning_rate=learning_rate, momentum=0.9)
model.compile(loss=tf.keras.losses.Huber(),
optimizer=optimizer, metrics=["mse"])
model.fit(dataset, epochs=150)
see next page for forecasting using NNs;
huge variance in RMSE across 20 runs,
most likely due to tiny training dataset

import tensorflow as tf

the following function taken from Coursera's "Sequences, Time Series and Prediciton" course
def windowed_dataset(series, window_size, batch_size, shuffle_buffer):

"""Generates dataset windows
Args:
series (array of float) - contains the values of the time series
window_size (int) - the number of time steps to include in the feature
batch_size (int) - the batch size
shuffle_buffer(int) - buffer size to use for the shuffle method
Returns:
dataset (TF Dataset) - TF Dataset containing time windows
"""
Generate a TF Dataset from the series values
dataset = tf.data.Dataset.from_tensor_slices(series)
Window the data but only take those with the specified size
dataset = dataset.window(window_size + 1, shift=1, drop_remainder=True)
Flatten the windows by putting its elements in a single batch
dataset = dataset.flat_map(lambda window: window.batch(window_size + 1))
Create tuples with features and labels
dataset = dataset.map(lambda window: (window[:-1], window[-1]))
Shuffle the windows
dataset = dataset.shuffle(shuffle_buffer)
Create batches of windows
dataset = dataset.batch(batch_size).prefetch(1)
return dataset

forecasting using trained neural network; taken from the same course
def model_forecast(model, series, window_size, batch_size):

"""Uses an input model to generate predictions on data windows
Args:
model (TF Keras Model) - model that accepts data windows
series (array of float) - contains the values of the time series
window_size (int) - the number of time steps to include in the window
batch_size (int) - the batch size
Returns:
forecast (numpy array) - array containing predictions
"""
Generate a TF Dataset from the series values
dataset = tf.data.Dataset.from_tensor_slices(series)
Window the data but only take those with the specified size
dataset = dataset.window(window_size, shift=1, drop_remainder=True)
Flatten the windows by putting its elements in a single batch
dataset = dataset.flat_map(lambda w: w.batch(window_size))
Create batches of windows
dataset = dataset.batch(batch_size).prefetch(1)
Get predictions on the entire dataset
forecast = model.predict(dataset)
return forecast

