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What is statistical learning?
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What is statistical learning?

• Supervised: the available dataset contains inputs labelled with the corresponding
outputs; the goal is to build a model for predicting, or estimating, an output
based on an input

• Unsupervised: there are inputs, but no supervising outputs; the goal is to build a
model that transforms an input into something that can be used to solve a
practical problem

• Semisupervised: the dataset contains both labelled and unlabelled inputs,
usually with the latter constituting the vast majority; the goal is the same as in
the case of the supervised learning

• Reinforcement: create a policy (model) that, given a description of the
environment (its state), outputs an action to execute in that state; arises in
problems with sequential decision making and long-term goals
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Regression vs classification

• Regression: explained variable is continuous; the objective is to predict/estimate
its values corresponding to observations

• Classification: explained variable is discrete; the objective is to categorize
observations
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Supervised learning, regression

Y = f(X) + ε

• Y – observed quantitative response
• X = (X1, X2, . . . , Xp) – observed p predictors
• f – fixed but unknown function; systematic information that X provides about Y
• ε ∼ (0, σ2) – random error, independent of X

Goal: create f̂ , an estimate of f .
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Why estimate f?

• Prediction: the exact form of f̂ is irrelevant, what matters is the ability to
perform accurate predictions for new inputs

• Inference: the goal is to understand the ways in which Y is affected as
X1, . . . , Xp change. Typical questions of interest include the following.

• Which predictors are associated with the response?
• What is the relationship between the response and each predictor?
• Can the relationship between Y and each predictor be adequately summarized using

a linear equation, or is it more complicated?
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How good can the estimate of f be?

With Ŷ = f̂(X) being an estimate of Y = f(X) + ε, we have

E(Y − Ŷ )2 = E[f(X) + ε− f̂(X)]2

= E[(f(X)− f̂(X))2 + 2ε(f(X)− f̂(X)) + ε2]
= (f(X)− f̂(X))2︸ ︷︷ ︸

reducible error

+ σ2︸︷︷︸
irreducible error

Intuitively, σ2 > 0 because ε may contain unmeasurable variables useful in predicting Y
or some unmeasurable variation.
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How to estimate f?

Having access to training data {(x1, y1), . . . , (xn, yn)}, with xi = (xi1, xi2, . . . , xip),
one can use

• parametric methods, which (1) make an assumption about the functional form
of f and (2) apply some procedure to the training data that yields estimates of
f ’s parameters, most commonly by minimizing some loss function, or

• non-parametric methods, which do not assume any parametric form for the
relationship between predictors and response; predictions are derived from the
training data.
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How to estimate f? Methods examples

• Parametric: linear regression

fβ(X) = β0 + β1X1 + β2X2 + . . .+ βpXp,

L(β) := 1
n

n∑
i=1

(yi − fβ(xi))2, β̂ := argmin
β

L(β)

• Non-parametric: k-nearest neighbours regression

f̂(x) = 1
k

∑
xi∈Nk(x)

yi,

where Nk(x) denotes the set of k training observations closest to x with respect
to some metric.
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How to estimate f? Parametric vs non-parametric methods

• Parametric methods
• The problem of estimating f is reduced down to estimation of a set of parameters
• If the model is too simple, the fit will not be good
• If the model is too complex, the risk of overfitting arises

• Non-parametric methods
• Since no form is assumed, they have the potential to accurately fit a wider range of

possible shapes for f
• Large number of observations is needed in order to obtain an accurate estimate for f
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How to estimate f? Gradient descent

Gradient descent: iterative algorithm for finding local minima of a differentiable
function. In the ML context, applied to a loss function in search of model’s parameters
that minimize the loss.

For a differentiable f : Rm → R and a ∈ Rm, the gradient of f at a, denoted ∇f(a),
is the vector of partial derivatives of f at a, namely

∇f(a) :=
(
∂f

∂x1
(a), . . . , ∂f

∂xm
(a)
)T

.

Algorithm:

• pick a random x0 as the potential minimum of f
• xn+1 ← xn − γ∇f(xn)︸ ︷︷ ︸

learning step

, for n ∈ {0, 1, . . . , N}; γ is called the learning rate
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Notes on gradient descent

• If f is convex and γ < 1, GD will eventually converge to the global minimum
• If f is not convex, GD might get stuck in a critical point that is not a local

minimum
• If the learning rate γ is too big, GD might oscillate around a minimum
• If the learning rate is too small, GD might take very long time to converge
• There are many modifications of GD out there (e.g., with adaptive γ)
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Malfitting and the bias-variance trade-off

Assumptions: test data available, model accuracy metric AM selected.

• Overfitting/high variance: model achieves very good values of AM on the
training set but very poor ones on the test set.
The variance is an error of the model due to its sensitivity to small fluctuations in
the training set.

• Underfitting/high bias: model achieves poor values of AM on the training set.
The bias is an error arising from erroneous assumptions in the model (e.g., model
assumes linear relationship between features and response, but in fact it is far
from linear).

Goal: create a model with low bias and low variance.
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Causes of malfitting

• Overfitting
• Model is too complex for the data
• Too many features used but a small number of training observations

In consequence, model learns the training data, not a general relationship.
• Underfitting

• Model is too simple for the data (e.g., linear in the case of a non-linear relationship)
• Features do not provide enough information (too few features used or

non-informative ones)

In consequence, model is unable to learn a meaningful relationship.
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Overfitting prevention: regularization

Idea: modify the loss function by adding a penalizing term whose value is higher when
the model is more complex.

• L1/lasso regularization, example of linear regression:

L1(β) := 1
n

n∑
i=1

(yi − β0 −
p∑
j=1

βjxij)2 + α
n∑
j=1
|βj |

For sufficiently large values of the tuning parameter α > 0, the l1 penalty forces
some of the coefficients estimates to be exactly equal to zero. Thus, it performs
variable selection, possibly increasing explainability of the model.

• L2/ridge regularization, example of linear regression:

L2(β) := 1
n

n∑
i=1

(yi − β0 −
p∑
j=1

βjxij)2 + α
n∑
j=1

β2
j
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Overfitting prevention: cross-validation

k-fold cross-validation:
• Partition training data D randomly into k sets, say, D1, . . . , Dk.
• For i ∈ {1, . . . , k}, train the model on Di, compute its predictions accuracy Ai on
D \Di.

• Use the average accuracy 1
k

∑k
i=1Ai as the estimate for the accuracy on the test

set.
• Pick the model with the highest average accuracy.
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Data: preprocessing numerical features

• Missing values treatment
• Replace, e.g., with the feature’s median or mean.
• Reconstruct, e.g., interpolate from neighbours in the case of time series.
• Create a predictive model to predict missing values.
• Replace variable with missing with indicator variables, e.g., with missing in sex,

introduce declared sex male and declared sex female.
• Remove corresponding observations from the dataset.

• Outliers treatment (investigate for possible errors in data sources!)
• If not many, exclude them from training.
• Otherwise, clip the values, e.g., to the 5th - 95th percentile range.

• Scaling is important, since it usually speeds up the convergence of gradient
descent (and sampling in the Bayesian context); treat it as a hyperparameter
(e.g., standardization, x̃(j) := (x(j) − x̄(j))/sd(x(j)) vs normalization,
x̃(j) := (x(j) −min x(j))/(max x(j) −min x(j))).
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Data: feature engineering

Goal: create informative features from the available data, ones that will help the
model make more accurate predictions. Use domain knowledge, be creative.

• Try non-linear transformations of numerical features, e.g., x2, x3, 3
√
x or, in the

case of non-negative features, ln(1 + x),
√
x+ 2/3, 1/(1 + x).

• Try combinations of features: products, quotients, concatenations (of
categorical variables).

• One–hot encoding: for a categorical variable x assuming values in {val1, . . .,
valk}, introduce binary variables x is val1, . . ., x is valk (can be achieved in
Python using pandas.get_dummies).

• Binning (or bucketing): if the exact value of a numerical variable seems not to
matter, the variable can be converted into categorical ones, e.g., instead of age,
could use age below 18, age in 18 25, . . ., age over 80.
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Summary

1. Select potential classes of models to be used (regression vs classification,
predictive vs explanatory, parametric vs non-parametric).

2. Explore data in search of relationships.
3. Preprocess data (missing, outliers).
4. Feature engineering (transformations, encodings, scalings).
5. Model selection (cross-validation).
6. Analyse results produced by the best model. Are they satisfactory? Is there any

bias? Does the model struggle with specific data? If yes, go back to step 4.
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