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Recap of the previous lecture

1. Select potential classes of models to be used (regression vs classification,
predictive vs explanatory, parametric vs non-parametric).

Explore data in search of relationships.
Preprocess data (missing, outliers).
Feature engineering (non-linear transformations, encodings, scalings).

Model selection (cross-validation).

L T

Analyse results produced by the best model. Are they satisfactory? Is there any
bias? Does the model struggle with specific data? If yes, go back to step 4.
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Reminder 1: hypothesis testing, simplified

= Setup: a sample X; & F(0), null hypothesis Hy: 6 € O, assumed to be true,
alternative hypothesis Hy: 6 € © \ O

= Step 1: choose a statistic f(X1,...,X,) relevant to the hypotheses, such that
the distribution of f is known under Hy

= Step 2: give the form of the test: reject Hy in favour of Hy if f(X1,...,X,) €l

= Step 3: decide on significance level a = max P(reject Hy when Hy is true); use
« to derive [

= Step 4: conclude, based on the form of the test and the set I derived in the
previous step

= Step 5: compute p-value, the probability of obtaining test results at least as

extreme as the result actually observed, under the assumption that the null

hypothesis is true
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Reminder 1: hypothesis testing, example

= Setup: Xq,...,X, LY

alternative hypothesis Hy: u # pg, for some fixed g

(@, 02), 0 known, null hypothesis Ho: 1 = po,
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Reminder 1: hypothesis testing, example

= Setup: Xq,...,X, LY

alternative hypothesis Hy: u # pg, for some fixed g
» Step 1: statistic of choice: for now, will use f(Xi,...,X,) =X
= Step 2: give the form of the test: reject Hy in favour of H; if X > ¢, for some c

(@, 02), 0 known, null hypothesis Ho: 1 = po,

yet to be determined
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Reminder 1: hypothesis testing, example

= Setup: Xq,...,X, ifivd/\/'(,u, 02), a2 known, null hypothesis Hp: u = puo,
alternative hypothesis Hy: u # pg, for some fixed g

» Step 1: statistic of choice: for now, will use f(Xi,...,X,) =X

= Step 2: give the form of the test: reject Hy in favour of H; if X > ¢, for some c
yet to be determined

= Step 3: set significance level «, usually 0.05. Then

a = max P( reject Hy when Hy is true ) = max P(X > ¢ when p = pg)
X —pp_ c—
Ho > Ho

_ o Ho €~ Ho N
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= Step 4: conclude: reject Hy in favour of Hy if X > pg + 240/+/1
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Reminder 1: hypothesis testing, example

= Setup: Xq,...,X, ifivd/\/'(,u, 02), a2 known, null hypothesis Hp: u = puo,
alternative hypothesis Hy: u # pg, for some fixed g

» Step 1: statistic of choice: for now, will use f(Xi,...,X,) =X

= Step 2: give the form of the test: reject Hy in favour of H; if X > ¢, for some c
yet to be determined

= Step 3: set significance level «, usually 0.05. Then

a = max P( reject Hy when Hy is true ) = max P(X > ¢ when p = pg)
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» Step 4: conclude: reject Hy in favour of H; if X > po+ 200/\/1
= Step 5: p-value here is P(Z > (X — po)/(c//n))
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Reminder 1: hypothesis testing, example reformulated

= Setup: X; ii(}./\/'(u,az), o2 known, null hypothesis Hy: i = 19, alternative
hypothesis H1: p # pg, for some fixed g

= Step 1: statistic of choice: t-statistic f(X,...,X,) = 540

o o/v/n’
By the central limit theorem, X ~ N (1, 0%/n), and so, under the null hypothesis,
X
U/\;%O ~ N(0,1).

= Step 2: give the form of the test: reject Hy in favour of Hy if
f( X1, ..., Xpn) > 24
= Step 3: set significance level o, compute corresponding z,
= Step 4: conclude: reject Hy in favour of Hy if f(X1,...,X,) > 24
= Step 5: p-value here is P(Z > f(X1,...,X,))
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Reminder 2: Bayes’ theorem

p(D[©)p(O)
p(6|D) = (D)
component meaning
D data
© model parameters
p(D|O) data likelihood
p(©) prior parameters distribution
p(D) data distribution, constant, irrelevant
p(©|D) posterior parameters distribution
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Reminder 3: linear regression so far

= Training data: {(z1,91), ..., (@n,yn)}, with z; = (51, @iz, ..., xip) ERP, y; €R
1
= Training data in matrix form: X = | © |,y = (y1,...,yn)"
Ln
= Assumed real relationship: y; = f(z;) + €, € id (0,0?%)
= Model: j = XA%, (B1,...,Bp) €RP
Note: this form assumes that either X contains a column of ones (with the
corresponding coefficient being the intercept) or that both X and y have zero
mean (in which case the intercept is known to be zero).

= Loss function: L(B) = L|ly — 9[> (MSE)

= Regularization terms: «|3||1 (L1/lasso), a||B|]3 (L2/ridge)
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Optimal coefficients

Coefficients minimizing MSE can be determined by rewriting the loss function as
1§ —ylP? = (XBT —9)T (X" —y) = BXTXBT — BXTy —y" X" +yTy

and solving oL
B

This yields the ordinary least squares estimates of the coefficients

=2XTXB—2XTy=0.

) Ty\—1yT
Bors = (X" X)X y.
Similarly, the coefficients minimizing MSE loss under ridge regularization are
BRR = (XTX oy a]l)_lXTy.
No closed-form solution exists for lasso regularization, because in this case the loss
function is not differentiable. Nevertheless, we will use BLR to denote this solution.
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Linear regression and hypothesis testing

True relationship (population regression line) Least squares estimate for f(x) based on the observed data

— f(x) = 2x

. — fx)=2x
o y=2x+EE~NOL)
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3 Least squares estimate for f(x) based on the observed data

Estimates for f(x) based on different sets of observations
— f(x) =2x

— f(x)=2x
.
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Linear regression and hypothesis testing

sample mean OLS coefficients
Xi ™ N (p,0%) yi © N (BXi,0%)
p i =X ~N(p,0%/n) B, BoLs ~ N(B,0*(XTX)™1)
SE(R)? =o%/n SE(Bors) derived from Bors
Is 11 equal to zero? Compute Is B equal to zero? Compute
the t-statistic u/SE(i) and the t-statistic
the p-value §OLS/SE(§OLS) and the
p-value
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Linear regression and hypothesis testing

import numpy as np

import statsmodels.api as sm
rng = np.random.Generator (np.random.PCG64 (seed=72346))

x1
X2 = x1%%2

np.linspace(-1, 1, 100)

x3 = rng.standard_normal (100)
epsilon = rng.standard_normal(100) / 2

X
y = x1 + 2 * x2 + epsilon #no dependence on z3
est = sm.0LS(y, X)

est2 = est.fit()

print(est2.summary())

np.matrix([x1l, x2, x3]).T
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Linear regression and hypothesis testing

OLS Regression Results

(...)

coef std err t P>/t [0.025 0.975]
<1 0.9352 0.089 10. 461 0.000 0.758 1.113
T2 2.1422 0.114 18.749 0.000 1.915 2.369
z3 -0.0157 0.054 -0.288 0.774 -0.124 0.092
Omnibus: 0.873 Durbin-Watson: 1.754
Prob (Omnibus) : 0.646  Jarque-Bera (JB): 0.733
Skew: 0.209  Prob(JB): 0.693
Kurtosis: 2.968 Cond. No. 2.12
(...)
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Bayesian linear regression

= Assumed real relationship, rewritten: y|3, 0 ~ N (X7, o?)

= Errors assumed to be independent (ordinary regression)

priors posteriors
p(B|o) o< 1 (uniform) B| X,y ~ t,41, centered at Bors
p(0?) xx % (e.g., inverse uniform) 02| X,y ~ IG(-,")
B ~ N(°,%5) Bloy ~ N ()
o2 ~ IG(ag, bo) o2y ~ IG(-, ")
RS L£(0,b) BLr for a = 202/b is the mode
of B's posterior distribution,
B; ifi\(}/\/(O, c) Brr for a = 202 /c is both the mean

and the mode of 3's posterior distribution
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Potential problems, 1/3

Correlation of error terms: estimated standard errors tend to underestimate the true

standard errors, resulting in narrower confidence and prediction intervals; may lead to
unwarranted confidence in the model
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Potential problems, 2/3

Non-constant variance of error terms: can be identified in residual plots (¥ vs

y — ¥); suggests that the model is biased. One possible solution is to model a
non-linear transformation of y instead of y itself.
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Potential problems, 3/3

Multicollinearity: it can be difficult to separate out the individual effects of strongly
correlated variables on the response; compute variance inflation factors to identify

problematic variables:
VIF(X;) = 1/(1 = R, 1x_,)»

where R%Q‘Xﬂ_ denotes the R? from a regression of X; on all the other predictors.
Values exceeding five (corresponding to R%le_i greater than 0.8) indicate
multicollinearity.

Solutions: drop or combine (e.g., using their average after standardization) the

problematic variables.
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Variance inflation factors in Python

import numpy as np
from statsmodels.stats.outliers_influence import variance_inflation_factor
from statsmodels.tools.tools import add_constant

rng = np.random.Generator (np.random.PCG64 (seed=72346))

x1 = rng.standard_normal(100)

x2 = rng.standard_normal (100)

x3 = rng.standard_normal (100)

x4 = x1 + 3 * x2 + rng.standard_normal (100)

df = pd.DataFrame({f"x{i+1}": [x1, x2, x3, x4][i] for i in range(4)})

X = add_constant(df) # ezpected by variance_inflation_factor

pd.Series(

[variance_inflation_factor(X.values, i) for i in range(X.shape[1])], index=X.columns)
#const 1.008653

#z1 1.461295
#2.2 7.311439
#23 1.022520
#z4 7. 745740
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Model selection/hyperparameters tuning via grid search

from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn.linear_model import Lasso, Ridge

from sklearn.pipeline import Pipeline

from sklearn.model_selection import cross_val_score

>
]

df [features]
= df [target]
for scaler in [StandardScaler, MinMaxScaler]:

~
|

for m in [Lasso, Ridge]:
for alpha in np.linspace(0, 30, 1000):
model = m(alpha=alpha)
pipeline = Pipeline([("scaler", scaler(), ("model", model)])
cv = KFold(n_splits=10)
scores = cross_val_score(pipeline, X, y, cv=cv, scoring="neg_mean_squared_error")
score = -np.mean(scores)

# code for keeping track of scores omitted here
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Model selection/hyperparameters tuning using hyperopt-sklearn

from hpsklearn import HyperoptEstimator, linear_regression, lasso, ridge , any_preprocessing
from hyperopt import tpe

from hyperopt import hp

from sklearn.metrics import mean_squared_error

X_train = df [features]
y_train = df [target]
reg_alpha = hp.loguniform("alpha", low=np.log(le-5), high=np.log(50))
models = hp.choice("regressor",
[linear_regression("1lr"),
lasso("lasso", alpha=reg_alpha),
ridge("ridge", alpha=reg_alpha)])
estim = HyperoptEstimator(regressor=models, preprocessing=any_preprocessing('"my_pre"),
algo=tpe.suggest, max_evals=200,
trial_timeout=120, loss_fn=mean_squared_error)
estim.fit(X_train, y_train, n_folds=5, cv_shuffle=True)
print(estim.best_model())
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1. P-values in ordinary least squares regression allow for assessing features

importance

2. Coefficients of OLS, lasso and ridge regression lines estimated by minimizing MSE
correspond to coefficients in Bayesian linear regression under appropriate priors

3. Use variance inflation factors for assessing multicollinearity of predictors
4. Use residual plots for checking model bias

5. Use hyperopt-sklearn for model selection!
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