Linear regression

Wojciech Wideł

Recap of the previous lecture

- 1. Select potential classes of models to be used (regression vs classification, predictive vs explanatory, parametric vs non-parametric).
- 2. Explore data in search of relationships.
- 3. Preprocess data (missing, outliers).
- 4. Feature engineering (non-linear transformations, encodings, scalings).
- 5. Model selection (cross-validation).
- 6. Analyse results produced by the best model. Are they satisfactory? Is there any bias? Does the model struggle with specific data? If yes, go back to step 4.

Reminder 1: hypothesis testing, simplified

- **Setup**: a sample $X_i \stackrel{\text{iid}}{\sim} F(\theta)$, null hypothesis $H_0 \colon \theta \in \Theta_0$, assumed to be true, alternative hypothesis $H_1 \colon \theta \in \Theta \setminus \Theta_0$
- Step 1: choose a statistic $f(X_1, \ldots, X_n)$ relevant to the hypotheses, such that the distribution of f is known under H_0
- Step 2: give the form of the test: reject H_0 in favour of H_1 if $f(X_1,\ldots,X_n)\in I$
- Step 3: decide on significance level $\alpha = \max P(\text{reject } H_0 \text{ when } H_0 \text{ is true});$ use α to derive I
- **Step 4**: conclude, based on the form of the test and the set *I* derived in the previous step
- Step 5: compute p-value, the probability of obtaining test results at least as extreme as the result actually observed, under the assumption that the null hypothesis is true

■ **Setup**: $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$, σ^2 known, null hypothesis H_0 : $\mu = \mu_0$, alternative hypothesis H_1 : $\mu \neq \mu_0$, for some fixed μ_0

- **Setup**: $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$, σ^2 known, null hypothesis H_0 : $\mu = \mu_0$, alternative hypothesis H_1 : $\mu \neq \mu_0$, for some fixed μ_0
- Step 1: statistic of choice: for now, will use $f(X_1, \ldots, X_n) = \overline{X}$

- **Setup**: $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$, σ^2 known, null hypothesis H_0 : $\mu = \mu_0$, alternative hypothesis H_1 : $\mu \neq \mu_0$, for some fixed μ_0
- Step 1: statistic of choice: for now, will use $f(X_1,\ldots,X_n)=\overline{X}$
- Step 2: give the form of the test: reject H_0 in favour of H_1 if $\overline{X} > c$, for some c yet to be determined

- **Setup**: $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$, σ^2 known, null hypothesis H_0 : $\mu = \mu_0$, alternative hypothesis H_1 : $\mu \neq \mu_0$, for some fixed μ_0
- Step 1: statistic of choice: for now, will use $f(X_1, \ldots, X_n) = \overline{X}$
- Step 2: give the form of the test: reject H_0 in favour of H_1 if $\overline{X} > c$, for some c yet to be determined
- Step 3: set significance level α , usually 0.05. Then

$$\alpha = \max P(\text{ reject } H_0 \text{ when } H_0 \text{ is true }) = \max P(\overline{X} > c \text{ when } \mu = \mu_0)$$

$$= \max P(\frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}} > \frac{c - \mu_0}{\sigma/\sqrt{n}} \text{ when } \mu = \mu_0) \stackrel{H_0}{=} \max P(Z > \underbrace{\frac{c - \mu_0}{\sigma/\sqrt{n}}}_{Z_0}), Z \sim \mathcal{N}(0, 1).$$

- **Setup**: $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$, σ^2 known, null hypothesis H_0 : $\mu = \mu_0$, alternative hypothesis H_1 : $\mu \neq \mu_0$, for some fixed μ_0
- Step 1: statistic of choice: for now, will use $f(X_1,\ldots,X_n)=\overline{X}$
- Step 2: give the form of the test: reject H_0 in favour of H_1 if $\overline{X} > c$, for some c yet to be determined
- Step 3: set significance level α , usually 0.05. Then

$$\alpha = \max P(\text{ reject } H_0 \text{ when } H_0 \text{ is true }) = \max P(\overline{X} > c \text{ when } \mu = \mu_0)$$

$$= \max P(\frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}} > \frac{c - \mu_0}{\sigma/\sqrt{n}} \text{ when } \mu = \mu_0) \stackrel{H_0}{=} \max P(Z > \underbrace{\frac{c - \mu_0}{\sigma/\sqrt{n}}}_{Z_{2n}}), Z \sim \mathcal{N}(0, 1).$$

• Step 4: conclude: reject H_0 in favour of H_1 if $\overline{X} > \mu_0 + z_\alpha \sigma / \sqrt{n}$

- **Setup**: $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$, σ^2 known, null hypothesis H_0 : $\mu = \mu_0$, alternative hypothesis H_1 : $\mu \neq \mu_0$, for some fixed μ_0
- Step 1: statistic of choice: for now, will use $f(X_1, \ldots, X_n) = \overline{X}$
- Step 2: give the form of the test: reject H_0 in favour of H_1 if $\overline{X} > c$, for some c yet to be determined
- Step 3: set significance level α , usually 0.05. Then

$$\alpha = \max P(\text{ reject } H_0 \text{ when } H_0 \text{ is true }) = \max P(\overline{X} > c \text{ when } \mu = \mu_0)$$

$$= \max P(\frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}} > \frac{c - \mu_0}{\sigma/\sqrt{n}} \text{ when } \mu = \mu_0) \stackrel{H_0}{=} \max P(Z > \underbrace{\frac{c - \mu_0}{\sigma/\sqrt{n}}}), Z \sim \mathcal{N}(0, 1).$$

- Step 4: conclude: reject H_0 in favour of H_1 if $\overline{X} > \mu_0 + z_\alpha \sigma / \sqrt{n}$
- Step 5: p-value here is $P(Z > (\overline{X} \mu_0)/(\sigma/\sqrt{n}))$

Reminder 1: hypothesis testing, example reformulated

- **Setup**: $X_i \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$, σ^2 known, null hypothesis H_0 : $\mu = \mu_0$, alternative hypothesis H_1 : $\mu \neq \mu_0$, for some fixed μ_0
- Step 1: statistic of choice: t-statistic $f(X_1, \ldots, X_n) = \frac{X \mu_0}{\sigma / \sqrt{n}}$. By the central limit theorem, $\overline{X} \sim \mathcal{N}(\mu, \sigma^2/n)$, and so, under the null hypothesis, $\frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1)$.
- Step 2: give the form of the test: reject H_0 in favour of H_1 if $f(X_1,\dots,X_n)>z_{\alpha}$
- Step 3: set significance level α , compute corresponding z_{α}
- Step 4: conclude: reject H_0 in favour of H_1 if $f(X_1,\ldots,X_n)>z_{\alpha}$
- Step 5: p-value here is $P(Z > f(X_1, \dots, X_n))$

$$p(\Theta|D) = \frac{p(D|\Theta)p(\Theta)}{p(D)}$$

component	meaning
D	data
Θ	model parameters
$p(D \Theta)$	data likelihood
$p(\Theta)$	prior parameters distribution
p(D)	data distribution, constant, irrelevant
$p(\Theta D)$	posterior parameters distribution

Reminder 3: linear regression so far

- Training data: $\{(x_1,y_1),\ldots,(x_n,y_n)\}$, with $x_i=(x_{i1},x_{i2},\ldots,x_{ip})\in\mathbb{R}^p$, $y_i\in\mathbb{R}$
- \blacksquare Training data in matrix form: $X = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$, $y = (y_1, \dots, y_n)^T$
- Assumed real relationship: $y_i = f(x_i) + \epsilon_i, \ \epsilon_i \stackrel{\text{iid}}{\sim} (0, \sigma^2)$
- Model: $\hat{y} = X\beta^T$, $(\beta_1, \dots, \beta_p) \in \mathbb{R}^p$ Note: this form assumes that either X contains a column of ones (with the corresponding coefficient being the intercept) or that both X and y have zero mean (in which case the intercept is known to be zero).
- Loss function: $L(\beta) = \frac{1}{n}||y \hat{y}||^2$ (MSE)
- Regularization terms: $\alpha ||\beta||_1$ (L1/lasso), $\alpha ||\beta||_2^2$ (L2/ridge)

Optimal coefficients

Coefficients minimizing MSE can be determined by rewriting the loss function as

$$||\hat{y}-y||^2=(X\beta^T-y)^T(X\beta^T-y)=\beta X^TX\beta^T-\beta X^Ty-y^TX\beta^T+y^Ty$$
 and solving
$$\frac{\partial L}{\partial \beta}=2X^TX\beta-2X^Ty=0.$$

This yields the ordinary least squares estimates of the coefficients

$$\widehat{\beta}_{OLS} = (X^T X)^{-1} X^T y.$$

Similarly, the coefficients minimizing MSE loss under ridge regularization are

$$\widehat{\beta}_{RR} = (X^T X + \alpha \mathbb{I})^{-1} X^T y.$$

No closed-form solution exists for lasso regularization, because in this case the loss function is not differentiable. Nevertheless, we will use $\widehat{\beta}_{LR}$ to denote this solution.

Linear regression and hypothesis testing

Wojciech Wideł

sample mean	OLS coefficients		
$X_i \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$	$y_i \stackrel{\mathrm{iid}}{\sim} \mathcal{N}(\beta X_i, \sigma^2)$		
μ , $\widehat{\mu} = \overline{X} \sim \mathcal{N}(\mu, \sigma^2/n)$	β , $\widehat{\beta}_{OLS} \sim \mathcal{N}(\beta, \sigma^2(X^TX)^{-1})$		
$SE(\widehat{\mu})^2 = \sigma^2/n$	$SE(\widehat{eta}_{OLS})$ derived from \widehat{eta}_{OLS}		
Is μ equal to zero? Compute	Is eta equal to zero? Compute		
the t-statistic $\widehat{\mu}/SE(\widehat{\mu})$ and	the t-statistic		
the p-value	$\widehat{eta}_{OLS}/SE(\widehat{eta}_{OLS})$ and the		
	p-value		

```
import numpy as np
import statsmodels.api as sm
rng = np.random.Generator(np.random.PCG64(seed=72346))
x1 = np.linspace(-1, 1, 100)
x^2 = x^{1**2}
x3 = rng.standard normal(100)
epsilon = rng.standard_normal(100) / 2
X = np.matrix([x1, x2, x3]).T
v = x1 + 2 * x2 + epsilon #no dependence on x3
est = sm.OLS(v. X)
est2 = est.fit()
print(est2.summary())
```

Linear regression and hypothesis testing

OLS Regression Results

<i>()</i>						
	coef	std err	t	P> t	[0.025	0.975]
x1	0.9352	0.089	10.461	0.000	0.758	1.113
<i>x</i> 2	2.1422	0.114	18.749	0.000	1.915	2.369
x3	-0.0157	0.054	-0.288	0.774	-0.124	0.092
Omnibus:		0.8	373 Durbin	n-Watson:		1.754
Prob(Omnib	us):	0.6	346 Jarque	e-Bera (JB):		0.733
Skew:		0.2	09 Prob(J	TB):		0.693
$\mathit{Kurtosis}$:		2.9	068 Cond.	No.		2.12
<i>()</i>						

Bayesian linear regression

- Assumed real relationship, rewritten: $y|\beta, \sigma \sim \mathcal{N}(X\beta^T, \sigma^2\mathbb{I})$
- Errors assumed to be independent (ordinary regression)

priors	posteriors			
$p(eta \sigma) \propto 1$ (uniform)	$eta X,y\sim t_{p+1}$, centered at \widehat{eta}_{OLS}			
$p(\sigma^2) \propto rac{1}{\sigma^2}$ (e.g., inverse uniform)	$\sigma^2 X,y\sim IG(\cdot,\cdot)$			
$\beta \sim \mathcal{N}(\beta^0, \sigma^2 \Sigma)$	$\beta \sigma, y \sim \mathcal{N}(\cdot, \cdot)$			
$\sigma^2 \sim IG(a_0, b_0)$	$\sigma^2 y \sim IG(\cdot, \cdot)$			
$\beta_i \stackrel{\text{iid}}{\sim} \mathcal{L}(0,b)$	\widehat{eta}_{LR} for $lpha=2\sigma^2/b$ is the mode			
	of β 's posterior distribution,			
$\beta_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0, c)$	\widehat{eta}_{RR} for $lpha=2\sigma^2/c$ is both the mean			
	and the mode of β 's posterior distribution			

Potential problems, 1/3

Correlation of error terms: estimated standard errors tend to underestimate the true standard errors, resulting in narrower confidence and prediction intervals; may lead to unwarranted confidence in the model

Potential problems, 2/3

Non-constant variance of error terms: can be identified in residual plots $(\widehat{y}$ vs $y-\widehat{y})$; suggests that the model is biased. One possible solution is to model a non-linear transformation of y instead of y itself.

Multicollinearity: it can be difficult to separate out the individual effects of strongly correlated variables on the response; compute *variance inflation factors* to identify problematic variables:

$$VIF(X_i) = 1/(1 - R_{X_i|X_{-i}}^2),$$

where $R_{X_i|X_{-i}}^2$ denotes the R^2 from a regression of X_i on all the other predictors. Values exceeding five (corresponding to $R_{X_i|X_{-i}}^2$ greater than 0.8) indicate multicollinearity.

Solutions: drop or combine (e.g., using their average after standardization) the problematic variables.

```
import numpy as np
from statsmodels.stats.outliers influence import variance inflation factor
from statsmodels.tools.tools import add_constant
rng = np.random.Generator(np.random.PCG64(seed=72346))
x1 = rng.standard normal(100)
x2 = rng.standard_normal(100)
x3 = rng.standard normal(100)
x4 = x1 + 3 * x2 + rng.standard_normal(100)
df = pd.DataFrame(\{f''x\{i+1\}'': [x1, x2, x3, x4][i] \text{ for } i \text{ in } range(4)\})
X = add_constant(df) # expected by variance inflation factor
pd.Series(
[variance_inflation_factor(X.values, i) for i in range(X.shape[1])], index=X.columns)
#const
         1.008653
#x1
         1.461295
#x2
         7.311439
#x.3
         1.022520
         7.745740
#x4
```

```
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn.linear_model import Lasso, Ridge
from sklearn.pipeline import Pipeline
from sklearn.model_selection import cross_val_score
X = df[features]
v = df[target]
for scaler in [StandardScaler, MinMaxScaler]:
    for m in [Lasso, Ridge]:
      for alpha in np.linspace(0, 30, 1000):
        model = m(alpha=alpha)
        pipeline = Pipeline([("scaler", scaler(), ("model", model)])
        cv = KFold(n splits=10)
        scores = cross_val_score(pipeline, X, y, cv=cv, scoring="neg_mean_squared_error")
        score = -np.mean(scores)
        # code for keeping track of scores omitted here
```

Model selection/hyperparameters tuning using hyperopt-sklearn

```
from hpsklearn import HyperoptEstimator, linear_regression, lasso, ridge , any_preprocessing
from hyperopt import tpe
from hyperopt import hp
from sklearn.metrics import mean squared error
X train = df[features]
v train = df[target]
reg_alpha = hp.loguniform("alpha", low=np.log(1e-5), high=np.log(50))
models = hp.choice("regressor",
        [linear_regression("lr"),
        lasso("lasso", alpha=reg alpha),
        ridge("ridge", alpha=reg_alpha)])
estim = HyperoptEstimator(regressor=models, preprocessing=any_preprocessing("my_pre").
            algo=tpe.suggest, max_evals=200,
            trial_timeout=120, loss_fn=mean_squared_error)
estim.fit(X_train, v_train, n_folds=5, cv_shuffle=True)
print(estim.best model())
```

Summary

- 1. P-values in ordinary least squares regression allow for assessing features importance
- 2. Coefficients of OLS, lasso and ridge regression lines estimated by minimizing MSE correspond to coefficients in Bayesian linear regression under appropriate priors
- 3. Use variance inflation factors for assessing multicollinearity of predictors
- 4. Use residual plots for checking model bias
- 5. Use hyperopt-sklearn for model selection!

References

- G. James, D. Witten, T. Hastie and R. Tibshirani, An Introduction to Statistical Learning
- https://ekamperi.github.io/mathematics/2020/08/02/ bayesian-connection-to-lasso-and-ridge-regression.html
- https://de.mathworks.com/help/econ/what-is-bayesian-linear-regression.html
- https://statswithr.github.io/book/introduction-to-bayesian-regression.html#sec: Bayes-multiple-regression
- https://gregorygundersen.com/blog/2021/08/26/ols-estimator-sampling-distribution/
- hyperopt-sklearn paper:

https://www.automl.org/wp-content/uploads/2019/05/AutoML_Book_Chapter5.pdf