
Classification

Wojciech Wide l

Context and contents

• Target variable is qualitative/categorical
• An approach often taken is to model the probability of an observation

belonging to a category
• A hyperparameter common for different methods is the classification threshold;

if predicted probability of belonging to class c exceeds the threshold, then indeed
assign class c to the observation

Today:

• Methods: logistic regression, linear discriminant analysis, K-nearest neighbours,
support vector machines

• Accuracy metrics and when to use which
• Potential issues

Wojciech Wide l July 2024 2/ 25

Logistic regression: modelling probability

• Given x ∈ Rp, how to predict probability p(x) ∈ [0, 1] of something occurring?
• We know linear models, xβ; since xβ ∈ R, one idea is to use a linear model for

predicting some transformation of p.
• A meaningful transformation: p 7→ p

1−p ∈ [0,+∞], odds ratio.

• Add one more step to get to the real line: p 7→ log
(

p
1−p

)
∈ R.

• The linear model ̂log
(

p
1−p

)
= xβ is equivalent to the non-linear model

p̂ = 1
1+e−xβ .

Wojciech Wide l July 2024 3/ 25

Logistic regression for binary classification

• Two classes, y ∈ {0, 1}, goal: predict p(y = 1|x), x ∈ Rp

• Tool: logistic function g(z) := 1
1+e−z

• Properties:
• g(z) ∈ (0, 0.5) for z < 0, lim

z→−∞
g(z) = 0

• g(z) ∈ [0.5, 1) for z ≥ 0, lim
z→∞

g(z) = 1
Wojciech Wide l July 2024 4/ 25

Logistic regression for binary classification

• Model: p̂(yi = 1|xi) = 1
1+e−xiβ ; will use p(yi) for simplicity

• It follows that the decision boundary is linear in the inputs space:
• xiβ < 0 implies p(yi) ∈ (0, 0.5),
• xiβ ≥ 0 implies p(yi) ∈ [0.5, 1).

• Data likelihood under the model:

l(β) =

 ∏
i : yi=1

p(yi)

 ·
 ∏
i : yi=0

(1− p(yi))


• Fitted parameters (ideally): β̂ maximizing l(β)

Wojciech Wide l July 2024 5/ 25

The log loss function

argmax l(β) = argmin−l(β) = argmin−

 ∏
i : yi=1

p(yi)

 ·
 ∏
i : yi=0

(1− p(yi))


= argmin−

 ∑
i : yi=1

log p(yi)

−
 ∑
i : yi=0

log(1− p(yi))


= argmin−

[
n∑
i=1

yi log p(yi)
]
−
[
n∑
i=1

(1− yi) log(1− p(yi))
]

= argmin−
n∑
i=1

[
yi log p(yi) + (1− yi) log(1− p(yi))

]
Thus, β̂ can be obtained by minimizing the last expression, known as the log loss
function. This function is convex, and so gradient descent can be applied. Of course,
it is a good idea to add a regularization term.
Wojciech Wide l July 2024 6/ 25

Multinomial logistic regression

• y ∈ {1, 2, . . . , C}, goal: predict p(y = c|x) for c ∈ {1, 2, . . . , C}
• Tools: score functions f(β, i) = eβxi and the softmax function
softmax(k, a1, a2, . . . , an) := eak/

∑n
i=1 e

ai

• Model: p̂(yi = c|xi) = softmax(c, β1xi, . . . , βCxi) = f(βc, i)/
∑
k f(βk, i)

• Intuition: the greater βcxi is, the more likely it is that xi belongs to class c.
Exponentiation of the values βkxi exaggerates the differences between them.

• Data likelihood under the model is l(β) =
n∏
i=1

(
C∏
c=1

p̂(yi = c|xi)δc,yi
)
, where

δc,yi = 1 if c = yi and 0 otherwise (the Kronecker delta).
• The negative log-likelihood is in this case the cross-entropy:

− log l(β) = −
n∑
i=1

C∑
c=1

δc,yi log(p̂(yi = c|xi)).

Wojciech Wide l July 2024 7/ 25

Linear discriminant analysis

This method relies on Bayes theorem, which applied in the classification context is

p(y = c|X = x) = p(X = x|y = c) · p(y = c)
p(X = x) .

Assuming that there are C classes, with nc observations in class c, and that it is
possible to estimate distributions of X in particular classes, to fill-in the right hand
side of the equation we can use

• p̂(y = c) := nc
n , and

• p̂(X = x|y = c) – derived from data,

obtaining
p(y = c|X = x) = p̂(X = x|y = c) · nc/n∑C

l=1 p̂(X = x|y = l) · nl/n
.

Wojciech Wide l July 2024 8/ 25

K-nearest neighbours

The probability of x belonging to class c is computed as

p(y = c|X = x) = 1
k

∑
xi∈Nk(x)

1yi=c,

where Nk(x) denotes the set of k training observations closest to x with respect to
some metric.

Wojciech Wide l July 2024 9/ 25

Support vector machines: linearly separable case

• y = 1, y = −1
• wTx = b – separating hyperplane
• With normalized or standardized

data, there exist two parallel
separating hyperplanes
wTx− b = 1 and wTx− b = −1
with maximal possible distance
between two separating hyperplanes

• The region bounded by them is
called the margin

• The maximum-margin hyperplane
is the hyperplane lying halfway
between themWojciech Wide l July 2024 10/ 25

Support vector machines: finding the maximum-margin hyperplane

• Minimize ||w|| (the distance between wTx− b = 1 and wTx− b = −1 is
2/||w||).

• Separate the two groups: w and b must satisfy wTxi − b ≥ 1 if yi = 1, and
wTxi − b ≤ −1 if yi = −1. Equivalently,

yi(wTxi − b) ≥ 1 for i ∈ {1, . . . , n}.

• Thus, we arrive at a quadratic programming problem:

minimize: ||w||22
subject to: yi(wTxi − b) ≥ 1, i ∈ {1, . . . , n}

b ∈ R, w ∈ Rp

Wojciech Wide l July 2024 11/ 25

Support vector machines

Closing remarks on linearly separable case.

• The maximum-margin hyperplane is determined by the points lying the closest to
it. They are called support vectors.

• The corresponding maximal margin classifier is x 7→ sgn(wTxi − b).

Modification for non-separable case: allow misclassifications, but penalize them.

minimize: ||w||22 + C
n∑
i=1

ζi

subject to: yi(wTxi − b) ≥1− ζi, i ∈ {1, . . . , n}
ζi ≥ 0, b ∈ R, w ∈ Rp

Wojciech Wide l July 2024 12/ 25

Support vector machines: non-linear separation

• Idea 1: apply a non-linear transformation φ to the inputs that will map them on a
space of a higher dimension. Fit SVM in that space.

• Idea 2: sufficient to know φ(x)Tφ(x′) =: K(x, x′), called the kernel, since inputs
impact the fitting process solely via the dot product.

Wojciech Wide l July 2024 13/ 25

Support vector machines: examples of kernels

• Polynomial, homogeneous: K(x, x′) = (xTx′)d

• Polynomial, inhomogeneous: K(x, x′) = (xTx′ + r)d

• Gaussian radial basis function (RBF): K(x, x′) = exp
(
−γ||x− x′||2

)
for γ > 0

• Sigmoid function: K(x, x′) = tanh
(
κxTx′ + c

)
Remark. The non-linear transformation trick could also be applied for other classifiers
with linear decision boundary (e.g., logistic regression). The drawbacks are (1) the
need for explicit transformation definition, (2) increased complexity of the parameters
fitting process due to huge increase in the input space dimension.

Wojciech Wide l July 2024 14/ 25

Support vector machines: illustration

Wojciech Wide l July 2024 15/ 25

Support vector machines: multinomial case

Fit separate SVM classifier for every class c ∈ {1, 2, . . . , C}, with each of them fitted
for the binary classification y = c vs y 6= c.

Remark. The same approach (one-vs-rest) can be used for logistic regression and any
other classification method.

Wojciech Wide l July 2024 16/ 25

Confusion matrix and accuracy metrics

Observed class
Positive Negative Total

Predicted class
Positive TP FP TP + FP

Negative FN TN FN + TN

Total TP + FN FP + TN n

• Accuracy: (TP+TN)/n
• True positive rate/sensitivity/recall: TP/P = TP/(TP+FN)
• False positive rate/specificity: FP/N = FP/(FP+TN)
• Precision: TP/(TP+FP)
• F1-score: 2(PREC·RECALL)/(PREC+RECALL)

Wojciech Wide l July 2024 17/ 25

When to use which accuracy metric

Remark. Hardly ever only one metric is used.

• Accuracy: when the classes are balanced and each class is equally important
• True positive rate: when identifying positives is crucial, even at the cost of raising

false alarms (e.g., identifying fraudulent transactions)
• False positive rate: when the cost of raising an alert is costly
• Precision: when the follow-up actions for positive identification are costly
• F1-score: it is the harmonic mean of precision and recall, optimizing it strikes

balance between the two

Wojciech Wide l July 2024 18/ 25

Potential issues: imbalanced classes

Maybe 95% of your training emails are regular ones (majority class), and only 5% are
spam (minority class).

• Some evaluation metrics will be misleading; e.g., model assigning majority class to
every observation will achieve 95% accuracy on the training set.

• Model will be biased towards the majority class, as it learns more about it; i.e., it
will perform better on the majority class.

• Model will generalize poorly to new data, especially for the minority class.
• Misclassifying observations from the minority class might have costly

consequences (e.g., cancer diagnosis).

Wojciech Wide l July 2024 19/ 25

Potential fixes for imbalanced classes

• Choose proper evaluation metric. The F1 score might be a good choice.
• Resample your data, so that the sizes of the two classes are equal, e.g.,

• under-sample majority class: remove randomly selected observations from the
majority class,

• over-sample minority class: add randomly selected copies of minority class
observations,

• use synthetic minority oversampling (SMOTE): create synthetic minority class
observations.

• Penalize learning algorithm so that mistakes made on minority class contribute
more to the loss function. For SVM in Python this can be done with
classifier = SVC(class_weight='balanced', probability=True).

• Try different algorithms. Tree ensembles (random forests, gradient boosted trees,
etc.) are known to be effective in this case.

Wojciech Wide l July 2024 20/ 25

An example

TODO; plot scores vs classification threshold

Wojciech Wide l July 2024 21/ 25

Model selection/hyperparameters tuning via grid search

from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn.linear_model import Lasso, Ridge
from sklearn.pipeline import Pipeline
from sklearn.model_selection import cross_val_score

X = df[features]
y = df[target]
for scaler in [StandardScaler, MinMaxScaler]:

for m in [Lasso, Ridge]:
for alpha in np.linspace(0, 30, 1000):

model = m(alpha=alpha)
pipeline = Pipeline([("scaler", scaler(), ("model", model)])
cv = KFold(n_splits=10)
scores = cross_val_score(pipeline, X, y, cv=cv, scoring="neg_mean_squared_error")
score = -np.mean(scores)
code for keeping track of scores omitted here

Wojciech Wide l July 2024 22/ 25

Model selection/hyperparameters tuning using hyperopt-sklearn

from hpsklearn import HyperoptEstimator, linear_regression, lasso, ridge , any_preprocessing
from hyperopt import tpe
from hyperopt import hp
from sklearn.metrics import mean_squared_error

X_train = df[features]
y_train = df[target]
reg_alpha = hp.loguniform("alpha", low=np.log(1e-5), high=np.log(50))
models = hp.choice("regressor",

[linear_regression("lr"),
lasso("lasso", alpha=reg_alpha),
ridge("ridge", alpha=reg_alpha)])

estim = HyperoptEstimator(regressor=models, preprocessing=any_preprocessing("my_pre"),
algo=tpe.suggest, max_evals=200,
trial_timeout=120, loss_fn=mean_squared_error)

estim.fit(X_train, y_train, n_folds=5, cv_shuffle=True)
print(estim.best_model())

Wojciech Wide l July 2024 23/ 25

Summary

• Remember about classification threshold
• Logistic regression:

• Models the probability of an observation belonging to one of the classes.
• Decision boundary is linear in the inputs space.
• Parameters fitted by maximizing data likelihood (minimizing the negative

log-likelihood, log loss function).
• Support vector machines:

• xoxo
• xoxo
• xoxo

Wojciech Wide l July 2024 24/ 25

References

• G. James, D. Witten, T. Hastie and R. Tibshirani, An Introduction to Statistical
Learning

• https://en.wikipedia.org/wiki/Support_vector_machine

• https://neptune.ai/blog/evaluation-metrics-binary-classification

Wojciech Wide l July 2024 25/ 25

https://en.wikipedia.org/wiki/Support_vector_machine
https://neptune.ai/blog/evaluation-metrics-binary-classification

