
1

Beyond 2014: Formal methods for attack tree-based security

modeling

WOJCIECH WIDEŁ, Univ Rennes, INSA Rennes, CNRS, IRISA, Rennes, France
MAXIME AUDINOT, Univ Rennes, CNRS, IRISA, Rennes, France
BARBARA FILA, Univ Rennes, INSA Rennes, CNRS, IRISA, Rennes, France
SOPHIE PINCHINAT, Univ Rennes, CNRS, IRISA, Rennes, France

Attack trees are a well-established and commonly used framework for security modeling. They provide a
readable and structured representation of possible attacks against a system to protect. Their hierarchical struc-
ture reveals common features of the attacks and enables quantitative evaluation of security, thus highlighting
the most severe vulnerabilities to focus on while implementing countermeasures. Since in real-life studies
attack trees have a large number of nodes, their manual creation is a tedious and error-prone process, and
their analysis is a computationally challenging task. During the last half decade, the attack tree community
witnessed a growing interest in employing formal methods to deal with the aforementioned difficulties. We
survey recent advances in graphical security modeling, with focus on the application of formal methods to
the interpretation, (semi-)automated creation, and quantitative analysis of attack trees and their extensions.
We provide a unified description of existing frameworks, compare their features, and outline interesting open
questions.

CCS Concepts: • Security and privacy→ Formal security models; Logic and verification;

Additional Key Words and Phrases: Attack trees, attack–defense trees, graphical security modeling, formal
methods, quantitative analysis of security, automatic generation of security models, model checking, logics

ACM Reference format:
Wojciech Wideł, Maxime Audinot, Barbara Fila, and Sophie Pinchinat. 2019. Beyond 2014: Formal methods for
attack tree-based security modeling. ACM Comput. Surv. 1, 1, Article 1 (January 2019), 35 pages.
https://doi.org/10.1145/3331524

1 INTRODUCTION

Whether it is for representing vulnerabilities of various voting schemes [35], analyzing security of
critical infrastructures in the electric sector [82], classifying ATM-related frauds [37], or quantifying
cost, difficulty, and time of attacks against an RFID-based goods management system [18], attack
trees and their derivatives have been successfully adopted by the industrial sector as a means of
modeling and evaluation of security. This graphical formalism, inspired by threat logic trees [107]
and introduced by Schneier [101], owes its popularity to its simplicity, on the one hand, and a large
range of potential applications, on the other hand. The simple but powerful idea behind attack
trees is to recursively decompose an often complex attack scenario into sub-scenarios that can
be described and quantified more easily. With attack trees, one may capture, in a single model,

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2019 Association for Computing Machinery.
0360-0300/2019/1-ART1 $15.00
https://doi.org/10.1145/3331524

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2019.

https://doi.org/10.1145/3331524
https://doi.org/10.1145/3331524

1:2 Wojciech Wideł, Maxime Audinot, Barbara Fila, and Sophie Pinchinat

scenarios involving technical, physical, as well as human vulnerabilities, and thus perform an in-
depth analysis of security. Finally, in [101] Schneier also drafted an efficient, bottom-up procedure
(certainly inspired by techniques developed for fault trees [45]) exploiting the tree-like nature of
attack trees and allowing for their quantitative and qualitative evaluation.
Over the last twenty years, the original model of Schneier has been further improved, from

the scientific and practical perspective. Numerous formal semantics for attack trees have been
proposed [54, 57, 68, 81]; more powerful algorithms for quantitative analysis allowing for mul-
tiparameter evaluation and taking dependencies between attack steps into account have been
developed, cf., Section 5, 6, and 7; the expressive power of attack trees has been augmented with
countermeasures [25, 51, 68, 99], attacker profiles [39, 80], and a description of the analyzed sys-
tem [15, 16, 56]. Furthermore, a number of commercial and academic prototype tools have been
implemented to support real-life security analysis with attack tree-based models [52].
From the theoretical perspective, the most recent trend in the domain is to enhance the design

and analysis of attack trees with formal methods. In this paper, the term formal methods is broadly
understood, and covers standard verification techniques, e.g., model checking, automata theory,
logics, SAT, SMT or constraint solving, graph theory, as well as computational and optimization
algorithms based on integer linear programming, Bayesian networks, genetic algorithms, etc. The
objective of this survey is to give an overview of existing approaches integrating attack tree-based
modeling and formal methods in the following three dimensions
(1) semantical approaches, where the objective is to give a rigorous, mathematical meaning

to the (extended) attack tree model;
(2) generation approaches, aiming at a (semi-)automated creation of attack(–defense) trees;
(3) quantitative approaches, focusing on algorithms and techniques for quantitative analysis

of security.
We mainly consider two models: attack trees and their extensions with dependent nodes and

attack–defense trees augmenting attack trees with the nodes representing countermeasures. For
each presented approach, we first state its purpose and indicate which formal method has been
used in combination with attack or attack–defense modeling. An illustrative diagram is given to
visualize the approach in a schematic way. Then, we provide a short overview of the employed
formal method and explain how it has been incorporated into the graphical security modeling and
analysis. We also discuss whether there are any particular assumptions under which the framework
can be applied. Finally, we compare the presented approaches with the other ones dealing with
similar objectives.

While selecting the articles included in this overview paper, our aim was to be complementary
with respect to existing surveys in the domain of graphical security (and safety) modeling. Therefore,
we cover only the approaches using formal methods and being introduced between 2014 and 2018.
An exhaustive state of the art on DAG-based security modeling until 2013 has been presented
in [69]. The reader interested in usability aspects, practical applications, and computer tools for
graphical security modeling is referred to [52]. Finally, the approaches focusing on formal methods
for fault trees and their usage in safety modeling, have been reviewed in [100] and [65].

The intended public of this work is two-fold. First, we target the scientific community interested
in graphical security modeling. In this case, the paper’s aim is to gather relevant existing approaches,
present them in a unified way, and compare their features. Our objective is also to follow up the
work initiated in [69] and [52] and keep an up-to-date description of the research performed in
the field. Second, engineers and developers of tools supporting graphical security modeling and
analysis will find in this paper an overview of how formal methods can be exploited to enhance
the security evaluation based on graphical models. Here, our goal is to provide a comprehensible

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2019.

Beyond 2014: Formal methods for attack tree-based security modeling 1:3

summary of approaches that might be pertinent for their work and give pointers to the sources
where more details can be found. Especially for this second group of readers, we made an effort
to keep the frameworks’ descriptions self-contained, in the sense that individual sections can be
read independently. Finally, essential aspects of the described frameworks are gathered in three
comparative tables: Table 1 for semantical approaches, Table 3 for generation approaches, and
Table 4 for quantitative approaches. Their purpose is to quickly guide the reader towards the
solution that suits best their needs.

This survey is structured as follows. We start by recalling the preliminary information on attack
trees and attack–defense trees, in Section 2. The objective is to briefly present the two models and
set up the vocabulary used in the rest of the paper. Section 3 is devoted to frameworks addressing
the meaning and the expressiveness of the security models (semantical approaches), and Section 4
gathers approaches aiming at their (semi-)automated creation (generation approaches). The next
three sections are dedicated to the quantitative analysis of security (quantitative approaches). In
Section 5, we present methods enhancing the original bottom-up procedure to deal with multi-
objective optimization problems and to capture trees with repeated nodes. Section 6 focuses
on frameworks using timed automata and related model checking techniques and tools. Finally,
Section 7 concentrates on probabilistic analysis of security, involving stochastic games, probabilistic
model checking, and Bayesian networks. We summarize the scientific visibility of the graphical
security modeling area in Section 8, where we also outline interesting, open research directions
that are awaiting to be explored in the near future.

2 ATTACK(–DEFENSE) TREES IN A NUTSHELL

Attack trees [101] are a model for hierarchical representation of attack scenarios. Formally, they are
rooted trees with labeled nodes. The labels of the nodes represent goals of the attacker, with the label
of the root node corresponding to the main goal of the modeled scenario. If achieving a particular
goal requires from the attacker to achieve some other sub-goals, then the node labeled with that
goal is called refined. The basic model of attack trees admits two types of refinements: OR and AND.
To achieve the goal of an AND node (a conjuctively refined node), one needs to achieve sub-goals of
all of its children, whereas the goal of an OR node (a disjunctively refined node) is achieved when
the sub-goal of at least one of its children is achieved. Another often considered refinement is the
sequential refinement (SAND). Similarly as in the case of the conjunctive refinement, achieving the
goal of an SAND node requires achieving sub-goals of all of its children, but in the given order. If a
node is not refined, which in the case of attack trees is equivalent with it being a leaf node, then
the goal it represents is called a basic action.
Attack–defense trees (ADTrees) [68] enhance the expressive power of attack trees by explicitly

depicting goals of another actor – a defender – in the model. In a scenario represented by an ADTree,
a goal of an actor can be countered by a goal of the other actor. According to the terminology
introduced in [68], the root actor is called the proponent and the other actor is the opponent. The
proponent’s aim is to achieve the root goal, while the opponent tries to make it impossible.
Examples of symbolic attack tree and ADTree are given in Fig. 1. According to the standard

convention, red circles depict nodes of the attacker and green rectangles of the defender. Edges
connecting an AND node with its children are joined with an arc. Dotted edges connect countermea-
sures with the nodes whose goals they counter. In order for the attacker to achieve the main goal
of the scenario modeled with the attack tree from Fig. 1a, they need to execute both basic actions a
and b, and at least one of the actions c , d , or e . Such combinations of actions that are sufficient to
achieve the root goal of an attack tree are often called attack vectors, attack strategies, or simply
attacks. For instance, a,b, c and a,b,d are two examples of attack vectors covered by the attack

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:4 Wojciech Wideł, Maxime Audinot, Barbara Fila, and Sophie Pinchinat

tree from Fig. 1a. These vectors, however, are not sufficient for the attacker to achieve the root
goal of the ADTree from Fig. 1b. The vector a,b, c will not work, because the execution of c might
be countered by the defender performing actions i , j, and k . To make use of the vector a,b,d , the
attacker needs to additionally execute action д or h, to counterattack the countermeasure f .

AND

AND

a b

OR

c d e

(a) Attack tree

AND

AND

a b

OR

c

AND

i j k

d e

f

OR

g h

(b) ADTree

Fig. 1. An attack tree and an attack–defense tree

Even though the models
of attack trees andADTrees
appear to be very intu-
itive and self-explanatory,
their size and formal treat-
ment are often problem-
atic. Thus, it seems natu-
ral to take advantage of the
power of formal methods
to support the interpreta-
tion, creation, and analysis
of attack tree-based models.
The remaining sections of
this paper present the re-
sults of the scientific effort that has been undertaken in this direction.

3 FORMAL INTERPRETATIONS OF ATTACK TREES

The aim of attack trees is to represent complex security scenarios in an intuitive and easy to
understand way. The power of the model relies on two factors: the labels of the nodes that may
express any type of digital, physical, or human-related security concerns, and an intuitive notion
of decomposition of complex goals into simpler sub-goals and basic actions. Anyone who read the
original article of Schneier [101] will be able to draw a meaningful attack tree. However, to formally
analyze such trees, one needs to express them in a rigorous way, i.e., give them a formal interpretation.
Assigning mathematical objects to attack trees helps addressing a wide range of problems, including
enumerating all attack vectors covered by the tree, checking whether two structurally different
trees represent the same security scenario, comparing whether one tree contains more information
than another one, identifying paths in the analyzed system that correspond to potential attack
vectors, and verifying the quality of the attack tree refinements.

Classically, the following two interpretations are used for attack trees: the propositional semantics,
like in [60], where an attack tree is interpreted as a Boolean function representing the structure of
the tree, and the multiset semantics [81], interpreting an attack tree as a set of multisets modeling
the attack vectors covered by the tree. Unfortunately, none of these interpretations is rich enough
to capture the sequential behavior of the attacker, i.e., to model the SAND refinement.
This section provides an overview of more expressive, mathematical interpretations of attack

trees, that have been recently developed with the goal of differentiating between AND and SAND
refinements. We start with the series-parallel (SP) graph semantics (Section 3.1) that conservatively
extends the multiset semantics to attack trees with SAND. Section 3.2 investigates how linear logic
can be used to interpret and compare attack trees. Both the SP and the linear logic-based semantics
are independent of (the model of) the analyzed system. They also abstract away from the meaning
of the labels of the attack tree nodes. In contrast, the work presented in Section 3.3 takes the
model of the system to be analyzed into account. It proposes a semantics that relies on paths in the
transition system representing the analyzed real-life system, and expresses the labels of the attack

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2019.

Beyond 2014: Formal methods for attack tree-based security modeling 1:5

tree nodes in a formal way. This enables a verification of the correctness of an attack tree with
respect to the analyzed system.

Table 1. Mathematical interpretations of attack trees with SAND

Sec. Mathematical object AND vs SAND Tool
3.1 Series-parallel graphs Incomparable SPTool [67]
3.2 Linear logic formulæ AND may specialize SAND –

SAND may specialize AND
3.3 Paths in a transition system SAND specializes AND ATSyRA Studio [3]

A comparative table of the
mathematical interpretations
of attack trees with SAND is
given in Table 1. The ap-
proaches presented in this sec-
tion are mainly concerned with
the semantics providing a formal meaning to attack trees. Semantics that have been proposed to
address specific quantitative problems, e.g., timed or probabilistic analysis of attacks, are described
in Section 6 and 7.

3.1 Series-parallel interpretation: first formal foundations of attack trees with SAND

SAND

attack tree

theory of series-
parallel graphs

SP
semantics

Fig. 2. SP semantics of [57]

The problem of ordering actions that compose
an attack vector has been apparent for attack
trees since their introduction in 1999. Even
though original attack trees use only OR and
AND refinements, already the very first exam-
ples of attack trees implicitly assume that ac-
tions under (some) AND nodes are ordered. For instance, consider the tree illustrated in Figure 8
of [101] representing attacks against a general computer system. In order to get a message that
has been stored on the user’s hard drive, the attacker needs to get access to the hard drive and
read the file. Obviously, the action of accessing is a prerequisite for reading the file, so it needs to
be performed first. In general, the problem of ordering actions in attack trees has been addressed
in two ways: either AND is implicitly interpreted as an ordered operator (as in the example above)
or an extra sequential operator, that we call SAND and depict with an arrow, is added to capture
that some actions must be executed in a specific order, as proposed by Jhawar et al. in [57]. The
objective of [57] is to provide mathematical foundations of attack trees extended with the SAND
refinement, called SAND attack trees. To do so, the authors introduce a formal semantics for SAND
attack trees, based on series-parallel graphs (SP graphs), and extend the bottom-up method for
quantitative analysis from classical attack trees formalized in [81] to SAND attack trees.
SAND attack trees considered in [57] use three types of refinements: OR, AND, and SAND. They

thus allow to distinguish between actions that can be executed in parallel (connected with AND)
from those that need to be executed sequentially (connected with SAND). To formally interpret SAND
attack trees, Jhawar et al. use SP graphs. SP graphs are oriented, edge-labeled graphs that contain
two distinct nodes – a source with no incoming edges, and a sink with no outgoing edges – and
that can be built in a recursive way from smaller SP graphs, using their parallel and sequential
compositions. The parallel composition glues two SP graphs by identifying their sinks and their
sources, respectively. The sequential composition attaches the second SP graph to the first one, by
identifying the sink of the first one with the source of the second one. As schematized in Fig. 2,
the semantics developed in [57], called the SP semantics, interprets an SAND attack tree as a set
of SP graphs whose edges correspond to the basic actions of the tree, i.e., its leaves. Each of the
leaves of the tree is interpreted as the single edge SP graph, where the edge is labeled with the
basic action of the leaf. The parallel and sequential compositions are used to interpret the AND
and SAND refinements, respectively. OR refinements are simply interpreted as the union of the sets
of SP graphs corresponding to their children. Each SP graph belonging to the set of SP graphs

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:6 Wojciech Wideł, Maxime Audinot, Barbara Fila, and Sophie Pinchinat

interpreting a tree corresponds to an attack vector, i.e., a way of achieving the goal of the root node
of the tree. Fig. 3 illustrates an example of an SAND attack tree and its SP semantics.

AND

SAND

a b

OR

c d e

(a) SAND attack tree

{ , ,
a b

c

a b

d

a b

e

}

(b) and its SP semantics

Fig. 3. The SP interpretation of an SAND attack tree

The SP semantics turns
out to be a conservative
extension of the multi-
set semantics for classical
OR/AND attack trees of [81].
In the multiset semantics,
an attack tree is interpreted
as a set of multisets, where
each multiset is an un-
ordered collection of basic
actions representing an at-
tack vector. The SP semantics equips the multisets with a partial order encoding which of the
actions need to be performed sequentially.

To allow for an automated treatment of SAND attack trees, the authors of [57] introduce a complete
axiomatization of the SP semantics. It is composed of equalities representing semantics-preserving
transformations of SAND attack trees. By orienting axioms into a terminating and confluent term
rewriting system, the notion of canonical form for SAND attack trees has been introduced and
a prototype tool, called SPTool [67], was implemented. SPTool relies on Maude [33] as the
underlying computation engine. Its main functionalities are checking the equivalence between two
SAND attack trees and computing their canonical forms.
Finally, the notion of attribute domain and the bottom-up algorithm for quantitative analysis,

formalized for attack trees in [81], has been extended to SAND attack trees. The attribute domain
for SAND attack trees uses (possibly) different combination functions for AND and SAND nodes. This
implies that, from a quantitative perspective, actions that can be performed in parallel can be
distinguished from those that must be performed sequentially. For instance, if the minimal time
attribute is considered, the values of the children of an AND node are combined using max (to
reflect a parallel execution mode), and the values of the children of an SAND node are combined
using addition (to model the sequential execution mode). This distinction provides more accurate
quantitative results compared to the case when all conjunctively connected nodes are treated in
the same – either parallel or sequential – way.
The SP semantics was a starting point for the work presented in [54], where more expressive

semantics based on linear logic have been developed for SAND attack trees (called causal attack
trees in [54]). The reader is referred to Section 3.2 for more details.

3.2 Linear logic interpretation: specialization of attack trees

In [54], Horne et al. develop a framework, based on linear logic [43], to interpret classical attack
trees, i.e., attack trees with disjunctive (OR) and conjunctive (AND) refinements only, as well as
so called causal attack trees where the sequential refinement (SAND) is added. The authors show
how their framework generalizes existing formalizations of attack trees, based on multisets [81]
and SP-graphs [57]. Furthermore, a notion of attack tree specialization is introduced. Intuitively
speaking, specialization is a relation on attack trees modeling that an attack tree expresses some
information more precisely than another one. An example of the specialization of the attack tree
from Fig. 1a is given in Fig. 3a where, in addition to the information that both actions a and b need
to be executed, it is additionally required that they are executed in this specific order. Specialization
generalizes the notion of attack tree equivalence [68] that captures the fact that structurally different

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2019.

Beyond 2014: Formal methods for attack tree-based security modeling 1:7

trees represent the same scenario. A relation is then established between the specialization and the
quantitative bottom-up analysis of attack trees previously formalized in [81].

causal
attack trees

linear logic
attack tree

specialization

Fig. 4. Linear logic semantics of [54]

The authors of [54] interpret attack trees
using the logical semantics, based on linear
logic and introduced in this paper, which is
also used to derive the decision procedures
for attack tree specialization, as schematized
in Fig. 4. To define the logical semantics for
attack trees, Horne et al. use a fragment of linear logic called multiplicative additive linear logic
(MALL) [53]. They define an embedding of attack trees into positive linear logic propositions, where
OR and AND are interpreted using the MALL’s additive disjunction and the MALL’s multiplicative
conjunction, respectively. The relation between the multiset and the logical semantics is established:
the inclusion between the multiset semantics of two trees corresponds to the entailment of their
corresponding MALL interpretations.

The canonical way of equipping a commutative semiring with a preorder1 is used to define the
notion of attack tree specialization. An attack tree t is a specialization of an attack tree t ′ if, and
only if, the tree OR(t , t ′) is equal to t ′ modulo the axioms of the algebraic semantics. Since MALL
conservatively extends a commutative idempotent semiring, t is a specialization of t ′ if, and only if,
the MALL interpretation of t entails the MALL interpretation of t ′. This serves as a basis to define
the notion of soundness of an ordered attribute domain with respect to the specialization order,
ensuring that if t is a specialization of t ′, then the value quantifying t is smaller than or equal to the
value quantifying t ′. This generalizes the notion of compatibility between an attribute domain and
a semantics [68, 81], ensuring that for attribute domains compatible with an attack tree semantics,
equivalent trees (wrt this semantics) yield the same numerical value.
The second part of the paper deals with causal attack trees. The objective of the sequential

refinement is to model causal dependencies between attack steps. Contrary to existing work [57]
described in Section 3.1, where the conjunctive and sequential refinements are unrelated, Horne et
al. consider that, depending on the used applications, one of these refinements specializes the other
one. Three semantics are defined for causal attack trees. The first one, called intermediate semantics,
is based on equivalence classes (wrt particular isomorphisms) of labeled series-parallel graphs.
Here, an attack tree is interpreted as a set of series-parallel graphs whose parallel and sequential
compositions are used to interpret the AND and the SAND refinements, respectively. This semantics,
however, does not accommodate the notion of specialization. Thus, two sets of inequational axioms
are introduced to describe that SAND is a specialization of AND, and vice versa. These axioms give
rise to two additional denotational semantics: the ideal semantics and the filter semantics. The
ideal semantics maps causal attack trees to ideals. Roughly speaking, an ideal is a set of directed
graphs, such that if it contains a graph, then it also contains all the graphs obtained from this
graph by adding additional edges. In the ideal semantics, SAND is a specialization of AND. The filter
semantics maps causal attack trees to filters. Intuitively, a filter is a set of directed graphs, such that
if it contains a graph, then it also contains all the graphs obtained from this graph by removing
some edges. In the filter semantics, AND is a specialization of SAND. Horne et al. then prove that the
attribute domains for “minimal number of experts” and “time required to make all attacks possible”
are sound wrt the filter semantics, whereas the attribute domains for “minimal time required” and
“required number of experts on duty to counter any attack” are sound wrt the ideal semantics.

Finally, the MALL logic is extended with a non-commutative operator representing sequentiality.
This extension is called MAV (multiplicative additive system virtual) [53]. The ideal and the filter

1Classically, x ⪯ y if, and only if, x + y = y , where + is the semiring’s additive operator.

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:8 Wojciech Wideł, Maxime Audinot, Barbara Fila, and Sophie Pinchinat

semantics are systematized by two fragments of MAV, which yields a method for deciding whether
a causal attack tree is a specialization of another one according to one of these semantics. To do so,
it suffices to prove that a MAV implication between the two trees is provable.

3.3 Path interpretation: correctness of an attack tree with respect to a system

attack tree
refinement

transition system

correctness
checking

Yes/No

correctness
property

Fig. 5. Correctness checking of [15]

The goal of the work presented in [15] is
to verify the correctness of an OR/AND/SAND
attack tree with respect to the analyzed
system represented as a transition system.
In this paper, Audinot et al. introduce a
novel way of labeling the attack tree nodes
and a new semantics for attack trees which
is based on paths in the underlying tran-
sition system. This allows them to define
four correctness properties describing how
well the children of an attack tree node refine the node’s goal, in the context of a given system. The
paper establishes the theoretical complexity of checking the introduced correctness properties. The
approach is schematized in Fig. 5.
Audinot et al. use transition systems to model real-life systems. A transition system [66] is an

operational state-transition model with non–deterministic transitions. In [15], the states of the
transition system are labeled with propositions that express possible configurations of the real–life
system, and the transitions correspond to the actions of the attacker. Attack trees considered in
this work make use of the same set of propositions as the underlying transition system. Each node
of an attack tree is labeled with a so called goal, expressed with the help of two propositions: the
initial configuration representing the situation before the node’s attack starts (preconditions), and
the final configuration, describing the situation to be reached (postconditions). These pre– and
postconditions characterize the states of the transition system from which the attacker can start
and where they can end their attack. The nodes’ goals are not necessarily independent.
Contrary to the existing formalizations of attack trees, the semantics of the trees considered

by Audinot et al. relies on paths in the underlying transition system and not on the collection of
the attacker’s actions. The semantics of a node is defined as a set of paths in the transition system
linking a state where the initial configuration of the node’s goal is satisfied with a state where the
final configuration is valid. The semantics of a disjunctive (OR), conjunctive (AND), and sequential
(SAND) composition of nodes is defined using respectively the union, the parallel composition,
and the concatenation of the paths belonging to the semantics of its components. For instance, a
conjunctive composition of several goals is realized if there is a path that can be decomposed into
(possibly overlapping) paths that realize each of these goals. Such a view disallows any kind of
parallelism in the execution model.

Table 2. Complexity of correctness checking

meet under-match over-match match
OR P P P P
SAND P P P P
AND NP-c co-NP-c co-NP co-NP

The correctness of an attack tree refinement is
then defined by comparing the semantics of a par-
ent node with the semantics of its refinement, i.e.,
the semantics of the combination of its children us-
ing the parent node’s operator. The following four
correctness properties are introduced: meet – when
the intersection between the node’s semantics and the semantics of its refinement is non-empty;
under-match – when the semantics of the refinement is included in the semantics of the parent
node; over-match – when the semantics of the node is included in the semantics of its refinement;

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2019.

Beyond 2014: Formal methods for attack tree-based security modeling 1:9

andmatch when the semantics of a node is equal to the semantics of its refinement. The complexity
of verifying the four correctness properties is summarized in Table 2. The verification procedures
have been implemented in the ATSyRA Studio tool [3].
Finally, the authors of [17] follow-up on the work initiated in [15] by providing tight bounds

for the complexity of deciding the non-emptiness of the path semantics of an attack tree. The
non-emptiness problem is shown to be NP-complete for arbitrary attack trees, and NL-complete
for attack trees without AND refinements.

4 GENERATION APPROACHES

In practice, attack trees are in general constructed manually by security experts, which leads
to several serious drawbacks. First, the manual construction is very subjective and depends on
the modeler’s expertise. This means that trees designed by two different experts for the same
system might differ in their size, their structure, and even the attack vectors that they capture.
Second, a manual creation process is tedious and error-prone. Thus, the resulting attack trees may be
incomplete i.e., may miss some relevant attack vectors. Third, to facilitate the creation of an attack
tree, experts often use libraries of common attack patterns or reuse (parts of) the models created in
the past for other, similar cases. Starting from existing attack patterns may provide valuable help
in the design process, however, it may result in very generic trees that do not properly reflect the
subtleties of the analyzed system, which may impact possible attack vectors.

Table 3. Generation approaches for attack and attack–defense trees

Sec. Input model Output Connectors Tool
4.1 Process algebra Attack tree OR, AND Prototype
4.2 Domain-specific model Attack tree OR, AND, SAND ATSyRA [2]
4.3 TREsPASS model ADTree OR, AND TREsPASS tool [10]
4.4 Set of SP graphs and Attack tree OR, SAND Theoretical

set of refinements foundations
4.5 Transition system and Attack tree OR, AND, SAND Theoretical

a partially constructed attack tree foundations

Due to the above-mentioned
weaknesses of the manual con-
struction, approaches for (semi-)
automated attack tree generation
have recently attracted the atten-
tion of the security and formal
methods communities. Various
generation techniques emerged
for different kinds of input mod-
els. The approach presented in Section 4.1 makes use of a process algebra commonly employed to
model behavior of networks. Methods described in Section 4.2 and 4.3 are dedicated to the security
analysis of physical and socio-technical systems. The work presented in Section 4.4 is based on the
notion of refinement expressing possible decompositions of a goal into subgoals. Finally, Section 4.5
presents a method based on the Boolean satisfiability problem (SAT), that aims to guide a security
expert in designing a pertinent attack tree for a given system. The main features of the approaches
described in this section are summarized and compared in Table 3.
Methods for automated generation of attack trees usually rely on sophisticated and complex

formal engines (e.g., model checking, SAT solving) but once implemented, they act as “push button”
solutions assisting the expert in the laborious task of attack tree creation. Thus, from the user’s
perspective, automated generation is simple and proven, as long as the specification of the system
to be analyzed is available and is correct.

4.1 Process algebra-based generation of attack trees

Vigo and Nielson were the first ones to address the problem of automated generation of attack
trees, in [105] and [106]. They introduced a procedure, summarized in Fig. 6, that takes a system
modeled using the value-passing quality calculus [85] and a target location or asset, and generates
an AND/OR attack tree representing how the attacker may reach the location or acquire the asset.

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:10 Wojciech Wideł, Maxime Audinot, Barbara Fila, and Sophie Pinchinat

Using this procedure, one can generate attack trees covering all possible attacks or only the attacks
of minimal cost. Generation of the latter uses an SMT (satisfiability modulo theories) solver.

value-passing
quality

calculus model

target location

flow constraints SAT solving attack tree

SMT solving
attack of

mimimal cost

cost structure

Fig. 6. Attack tree generation by [105]

The value-passing qual-
ity calculus is a particu-
lar type of process alge-
bra. In the value-passing
quality calculus, a sys-
tem is formalized as a
set of processes. Pro-
cesses can run sequen-
tially or in parallel, and
can broadcast and re-
ceive messages to and from channels. In addition to a simple reception of a single message, a
process can wait for multiple messages at the same time, and continue when some specified subset
of these messages has been received. The channels of the value-passing calculus are used to model
security checks in the real system. Security checks are measures that protect parts of the system
from an attacker. These can for instance be physical objects used to control the access (e.g., keys or
badges) or means ensuring the secrecy of data (e.g., passwords). The capacity of the attacker to
bypass a security check is modeled by their ability to send a message to the channel representing
the security check. For example, sending a message to the channel “password” means knowing the
password. Basic actions of the attacker are of two types: the attacker can either gain the ability
of sending messages to a channel or actually send a message to a channel, if they already have
this ability. Notice that basic actions are not repeatable – once the ability to send a message to a
particular channel is obtained, it will never be lost.
The security analysis of a system modeled using the value-passing calculus consists in finding

attacks and displaying them. This is done in two steps: first, so called flow constraints are constructed,
and used to generate attacks in the system; then, the attacks are displayed using an attack tree. Flow
constraints are propositional formulæ describing how the attacker’s subgoals can be accomplished.
Examples of such subgoals are channels that the attacker can know, variables that they can control,
and some locations of interest in processes they can reach. Attacks are generated from flow
constraints using a SAT-based approach. First, each flow constraint representing how the attacker
can gain access to a channel is replaced by the disjunction between the flow constraint itself and a
proposition meaning guessing the channel. This transformation models the ability of the attacker
to access the channel. After applying these transformations, a conjunction of the flow constraints is
built and can be given to a SAT solver in order to compute all its models. Attacks are then generated
from the models by looking only at the valuation of propositions corresponding to channel guesses.
The attacks given by the SAT approach are under-approximations of real attacks, in the sense that
they only say which channels need to be guessed, but not how many times a message needs to be
sent to a single channel.

In the second step, the attack tree is generated from flow constraints. In that context, an attack
tree is a propositional formula. When no costs are considered, the attack tree is built from flow
constraints by backward chaining, as shown in [105]. The idea of the backward chaining algorithm
is the following: initially the attack tree is set to be a formula composed of a single positive literal,
corresponding to the root goal. As long as there are positive literals in the formula, one of them is
selected and each of its occurrences is replaced with the corresponding flow constraint. Attacks are
valuations, i.e., assignments of truth values to Boolean variables, satisfying the formula obtained
by backward chaining. The attack tree is thus this very same formula. The procedure for the flow

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2019.

Beyond 2014: Formal methods for attack tree-based security modeling 1:11

constraints’ generation as well as the backward chaining algorithm have been implemented in a
prototype tool which uses an external viewer to display the obtained attack trees. More details
about the tool can be found in [106].
Cost can also be assigned to basic actions to perform quantitative analysis. Cost structure is

defined using a partially ordered set of values and an associative, commutative operation on this
set with an identity element. This operation computes the cost of an attack by combining the costs
of the basic actions in the attack. The purpose of the quantitative analysis is to generate an attack
tree containing only those attacks that have minimal cost. An optimal attack is an optimal solution
to the satisfiability of the flow constraints, modulo the SMT theory derived from the cost structure.
The SMT solver Z3 [34] is then used to generate valuations corresponding to attacks of minimal
cost, as shown in [106]. Multiple attacks can be obtained by successively adding constraints to the
query, expressing that an answer cannot be one of the previously found solutions, or that it cannot
yield a cost value greater than the previously found optimal solution.

4.2 ATSyRA methodology: generation of attack trees for physical systems

In [89, 90], Pinchinat et al. address the problem of generating an attack tree for a given system
whose topology and/or behavior are modeled using a domain specific language (DSL). The general
idea is to specify the initial state for the attacker (e.g., that he is outside of a military building) and
automatically generate an OR/AND/SAND attack tree describing how the attacker can reach a target
state (e.g., reach an office where a confidential document is being printed). The generation procedure
has been implemented in a tool called ATSyRA– Attack Tree Synthesis for Risk Analysis [2]. ATSyRA
employs model checking techniques to find possible ways of reaching the target state starting from
the initial conditions, and performs parsing and merging to factorize the obtained paths into a
humanly understandable attack tree. The ATSyRA methodology is depicted in Fig. 7.

system model
in DSL

attack goal

model checking
set of attack

paths

hierarchy of actions

parsing & merging
attack
tree

Fig. 7. Attack tree generation with ATSyRA [89, 90]

ATSyRA takes as input a formal description of the analyzed system in a domain specific language.
The tool compiles this description into a symbolic transition system specified in the guarded action
language (GAL) which is the input language of the ITS-tool model checker [103]. The latter
generates a set of attack scenarios expressed as sequences of elementary actions available to the
attacker. The OR combination of these attack scenarios forms an OR/SAND attack tree. However,
such a flat attack tree usually contains many repetitions, may be very large, and thus difficult to
analyze. To address this issue, and transform such a flat attack tree into a factorized one having
usable internal structure, the authors of [89, 90] use parsing and merging. This transformation
relies on the notion of hierarchy of actions. The hierarchy is specified by the rules of an acyclic
grammar, where terminals are basic actions available to the attacker, and non-terminals represent
high-level actions that may be specified by the user. The objective of high-level actions is to give
names to possible meaningful refinements. For instance, instead of using two sequences composed
of basic actions “find-PIN” and “steal-card”, one may define a high-level action “get-credentials” and
specify the rule “get-credentials→ AND (find-PIN, steal-card)”. The parsing takes care of identifying
attack scenarios involving both actions “find-PIN” and “steal-card” which are then factorized using
the high-level action “get-credentials”. In order to have a meaningful hierarchy of actions, the

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:12 Wojciech Wideł, Maxime Audinot, Barbara Fila, and Sophie Pinchinat

rules for high-level actions need to be written by security experts. This implies that the attack tree
generation procedure of ATSyRA is semi-automatic. The rules for high-level actions may use OR,
AND, and SAND operators, so their application results in factorized OR/AND/SAND attack trees.

ATSyRA has been developed using the Eclipse Modeling Framework 2. The current implementation
supports a DSL of physical buildings, that captures components, such as zones, doors, offices,
escalators, stairs, as well as items, including keys, badges, alarms, etc. However, it could easily
be adapted to other DSLs, e.g., those describing computer networks. To do so, one only needs to
define the set of basic actions available to the attacker and specify desired high-level actions and
the corresponding rules.

4.3 TREsPASS: generation of attack(–defense) trees for socio-technical systems

socio-techical
system model

target asset

policy
invalidation

attack tree

Fig. 8. Attack tree generation by [56]

In [55, 56], Ivanova et al. automatically
generate an AND/OR attack tree from a
graph-based model of a socio-technical
system, using recursive policy invalidation.
The objective is to generate an attack tree
representing how the considered socio-
technical system can be attacked. The ap-
proach to the problem of generating attack trees and ADTrees considered in this section has been
developed within the EU project TREsPASS3. It is one of the steps in the process of analysis of
the system’s security, performed along the TREsPASS guidelines. The entire TREsPASS approach,
together with its philosophy, has been presented by Probst et al., in [93].
The graph-based model of the system has nodes representing locations, actors, processes, and

items. Nodes can contain assets, which are items or data. Locations are connected by directed edges
that depict how actors or processes can move between them. Conditions in which actions can
be performed by actors or processes are defined by policies. The latter can be global or bound to
specific locations. A policy may require credentials which are data, items or predicates. The attack
model is the classical model of attack trees, however, the children of conjunctively refined nodes are
ordered from left to right during the generation, so the AND nodes can be interpreted as sequential
nodes. Finally, subtrees may be repeated in the generated tree.
Attack trees generated in this work depict how an attacker may invalidate a policy in a given

system, see Fig. 8. The generation of such an attack tree is done by recursive policy invalidation [63,
64]: starting from a policy to invalidate, find all possible actors who could invalidate the policy,
i.e., the potential attackers. Then, identify all the pairs “(action, location)”, such that an attacker
performing “action” at “location” leads to invalidating the policy. For every potential attacker
and for every such a pair “(action, location)”, the following steps are performed: first, identify all
assets that are needed to perform “action” at “location”; second, generate all paths for the potential
attacker in the system to successively obtain the required assets, reach “location” and perform
“action”; and third, for each of these paths, identify all the policies that need to be invalidated for
the attacker to follow this path. The algorithm recursively constructs an attack tree for every policy,
and then combines them using an AND node to get a tree representing a single path. Finally, the
trees corresponding to particular paths are combined under a common OR node, resulting in a tree
invalidating the initial policy. The algorithm is detailed in [56].

The approach developed in [55] is adapted by Gadyatskaya to generation of ADTrees, in [38]. The
method presented in [38] relies on a simplified model of a socio-technical system, in which nodes

2https://www.eclipse.org/modeling/emf/
3https://www.trespass-project.eu/

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2019.

https://www.eclipse.org/modeling/emf/
https://www.trespass-project.eu/

Beyond 2014: Formal methods for attack tree-based security modeling 1:13

represent items, including, infrastructure locations, actors, and objects. If an item i is accessible from
an item i ′, then there exists a directed edge from the node representing i to the node representing
i ′ in the system model. The only local policies taken into account are the ones specifying which
credentials (physical objects or data) are required to access a particular item from another one. The
policies are additionally equipped with information on the mechanism that enforces them, e.g., a
policy stating that accessing a room requires a badge might be enforced by an RFID reader.

Below, we give an overview of the generation process of an ADTree, for a given system and a goal
of accessing an item i . The first step is to automatically exploit the model of the system and the local
policies: if i is accessible from an item i ′, then among the child nodes of the root node there is a node
labeled “access i from i ′”. If accessing i from i ′ requires satisfying a local policy p, a countermeasure
corresponding to p is attached to this node. This countermeasure can be again countered by the
attacker, in two ways: either by satisfying the policy or by breaking the enforcement mechanism of
p. Satisfying the policy requires obtaining appropriate credentials, i.e., accessing some other items.
The subtrees for accessing those items are created in the same manner. The second, semi-automatic
step relies on the presence of a human analyst. Generic countermeasures are attached to some of
the nodes of the attacker. It is up to the analyst to decide whether or not they are applicable in the
system under consideration, and if they are, to specify them further.

4.4 Biclique problem for a refinement-aware creation of attack trees

LTS over a set
of predicates

successful
traces

target
state

factorization

OR/SAND
decomposition

OR/SAND
attack tree

refinement
relation

Fig. 9. Attack tree generation by [42]

A theoretical framework addressing
the problem of attack tree generation
has been proposed by Gadyatskaya et
al., in [42]. This work has two main
contributions. First, given a seman-
tics for attack trees and a set of al-
lowed refinements, the authors for-
mally define the attack-tree genera-
tion problem. They provide a solution to this problem in the case of the SP semantics, introduced
in [57] and discussed in Section 3.1. Second, Gadyatskaya et al. propose an approach to generate an
attack tree for a given system represented with the help of a labeled transition system (LTS). The
particularity of the obtained tree is that it is refinement-aware, i.e., that its nodes correspond to the
meaningful levels of abstraction that can be expressed using the underlying LTS components.
The formalization of the attack tree generation problem relies on the notion of refinement.

Given a set of actions B, a refinement is an expression of the form b ◁ OP(b1, . . . ,bn), where
OP ∈ {OR, AND, SAND}, and b,bi ∈ B. The attack tree generation problem is defined wrt a given
attack tree semantics, understood as an equivalence relation on the set of all attack trees, as
in [57, 68, 81]. The input to this problem is the interpretation of an attack tree in a given semantics
and a set of refinements. The output is an attack tree having the same semantical interpretation as
the input, where the nodes are labeled by the elements of B, and such that all refinements in the
tree belong to the set of refinements provided by the input.
Gadyatskaya et al. develop an algorithm that provides a solution to the attack tree generation

problem in the case of the SP semantics [57] which interprets attack trees as sets of series-parallel
graphs (SP graphs). This algorithm relies on the edge biclique problem which is known to be
NP-complete [87]. The proposed solution generates attack trees with OR and SAND refinements only.

Finally, the authors of [42] also show how to generate an OR/SAND attack tree for a given system
modeled with the help of an LTS. Recall that an LTS is composed of a set of states containing the
initial state, a set of labels, and a binary relation defining possible transitions between two states,

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:14 Wojciech Wideł, Maxime Audinot, Barbara Fila, and Sophie Pinchinat

each transition having a label. In this work, every state is represented with the set of predicates
valid in this state. The labels of the generated attack tree nodes are taken from the set of system
states. To define the set of refinements, which is one of the inputs to the attack tree generation
problem, the abstraction relation on the set of states is introduced. State s is said to be more abstract
than state s ′, denoted s ⊑ s ′, if all predicates of s also belong to s ′ (therefore, this relation is a partial
order). Given the abstraction relation on the set of states, the abstraction-based set of refinements
is defined as the smallest set containing s ◁ OR(s1, . . . , sn), whenever s ⊑ si , for i ∈ {1, . . . ,n}, and
s ◁ SAND(s1, . . . , sn), whenever s ⊑ sn . This means that the goal of an OR node must be more abstract
than the goals of all of its children and the goal of an SAND node must be more abstract than the goal
of its right-most child. Given an LTS and an abstraction-based set of refinements defined as above,
an attack tree is then generated from a set of successful traces in the LTS, i.e., traces that start from
the initial state and end in any state containing a desired (set of) predicate(s). A predicate of interest
can for instance state that an attacker learned a secret or reached a specific location in the system.
The traces of the LTS indicate sequences of transitions that are valid in the modeled system and can
thus be connected with an SAND operator. Thanks to a factorization, the OR/SAND skeleton of the
attack tree (i.e., an attack tree with no labels at the refined nodes) is obtained. To label the refined
nodes of the skeleton, the abstraction-based set of refinements is used, as schematized in Fig. 9.
The idea behind the model of Gadyatskaya et al. is similar to the one from [15] described in

Section 3.3. Both approaches use LTSs to model the analyzed system, and attack trees are interpreted
with sets of paths (traces) in this LTS. The attack tree generation procedure developed in [42],
relying on an abstraction-based set of refinements, implies that all successful traces corresponding
to a node’s children level are included in the set of successful traces of the node. This means that,
in the spirit of the refinement properties defined in [15], attack trees generated by Gadyatskaya et
al. satisfy the global under-match property.

4.5 Guided design of attack trees by tracking useful positions

An orthogonal approach to generate attack trees has been proposed by Audinot et al. in [16]. The
contribution of this work is to guide an expert in a manual design of attack trees by exhibiting
leaves that are worth developing as they take part in an optimal attack of the system. The approach
is based on automata construction and makes use of the propositional satisfiability problem.

attack tree τ
automata
techniques

LTS S

τ -monitoring of S optimal path
synthesis

witness
trace

leaf in τ

SAT
solving

usefulness of the leaf
for the witness

Fig. 10. Guided design of attack trees by [16]

The framework developed in [16] captures attack trees with OR, AND, and SAND refinements. Their
leaves are labeled with reachability objectives by means of postconditions expressed as atomic
propositions. Such trees have a natural regular language semantics of traces, with an effective
construction of the finite-state automaton recognizing this language. The real-life system to be ana-
lyzed is modeled as a labeled transition system (LTS) with quantitative features (typically, a priced
timed automaton [21]), and whose states are decorated by atomic propositions. By synchronizing
the automaton and the LTS (with a standard product in the spirit of what is used to synchronize
a Büchi automaton with an LTS in model checking), all traces of the resulting LTS belong to the
attack tree trace language. Relying on well-known techniques to synthesize an optimal trace in an
LTS, an optimal attack of the system can be obtained. Next, a reduction to the propositional logic

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2019.

Beyond 2014: Formal methods for attack tree-based security modeling 1:15

satisfiability problem allows to identify leaves of the tree that may be involved in such an optimal
attack. As a result, the expert creating the tree is advised on which leaves in the partially-refined
tree may contribute to this attack and are therefore worth being refined further. Fig. 10 illustrates
the entire process.
More technically, to make a link between the attack tree and the LTS, a common alphabet is

used: this alphabet is the powerset of some set Prop of atomic propositions. Each state of the LTS S
is assigned with a subset of Prop (an element of 2Prop), modeling propositions valid in that state. A
path in S is abstracted as a trace by keeping only the sequence of propositions that hold along this
path. Each leaf of an attack tree is labeled with some atomic proposition γ ∈ Prop. The internal
nodes of attack trees are labeled with their refinement type (OR, AND, or SAND).
Formally, an attack tree leaf corresponds to linear-time reachability property in S, which is

formalized using trace semantics. Given an attack tree, its trace semantics is a language over the
set of positive conjunctive Boolean formulæ composed from the elements of Prop, as follows: the
semantics of a leaf node labeled by γ ∈ Prop contains all the words over 2Prop that end with element
γ in their last letter; the semantics of an OR node is the union of the semantics of its children; the
semantics of the SAND and AND nodes is defined using an enhanced concatenation and an enhanced
shuffle of languages, respectively. Intuitively, the enhanced concatenation models a sequential
composition of the attacker’s goals: either the goals are achieved one after another (standard
concatenation), or the goals are achieved simultaneously. The shuffle captures the achievement
of several goals in any possible order, possibly simultaneously. Audinot et al. show that the trace
semantics of an attack tree τ is a regular language and that an automaton, denoted Aτ , accepting
this language can be effectively constructed.

Automaton Aτ is used to monitor S, otherwise said, to restrict the system’s traces to the trace
semantics of attack tree τ . This is obtained as a product of Aτ and S, called τ -monitoring of S,
and denoted by τ [S]. The main contribution of this work is to take advantage of the monitored
system τ [S] in order to perform an early-stage quantitative analysis, even if the attack tree is
not fully deployed yet, and to guide the expert in further refinement of the tree. Typically, if
the system model is a priced timed automaton, and according to the state of the art results, the
problem of reaching a final state in τ [S] in, for instance, a cost-optimal way is decidable [4, 84],
the corresponding optimal path can be synthesized. Thanks to the way the monitored system τ [S]
is constructed, this path reflects an attack on S, covered by the attack tree τ , and its trace (in the
semantics of τ by construction) is called a witness. The cost of this witness gives a faithful value of
the partially-refined attack tree.

Once the witness is known, the aim is to identify which positions (and of uttermost importance
which leaf positions) in the tree τ justify the membership of this witness in the trace semantics of
τ , so that the security expert can be advised on which leaves of his partially-refined attack tree are
relevant for this witness and should therefore be deployed further. This is achieved by verifying
satisfiability of an appropriately constructed propositional formula.

The framework presented in this section has several similarities to the one introduced in [15] and
described in Section 3.3. Both approaches use an operation model (an LTS) of the analyzed system
while creating or analyzing an attack tree. In both cases, the labels of attack trees correspond to
the reachability goals in the underlying LTS and not, as in the majority of classical frameworks
for attack trees, to basic actions composing the attacks described by the tree. However, in contrast
to [15], the reachability goals considered in [16] represent only the postconditions to be reached by
the attacker, i.e., the initial preconditions are not explicitly specified. This implies that the operation
of enhanced shuffle, formalizing the semantics of the AND nodes, is associative (contrary to the
parallel composition of paths employed in [15]), and thus the considerations of [16] can be reduced

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:16 Wojciech Wideł, Maxime Audinot, Barbara Fila, and Sophie Pinchinat

to binary (instead of unranked) trees. Finally, unlike in [15], the internal nodes of attack trees
in [16] are labeled with the type of their refinement and not with extra reachability goals.

5 STATIC ANALYSIS

Classical problems one can consider given an attack(–defense) tree involve determining quantitative
properties of the modeled scenario, e.g., minimal cost or minimal time needed for achieving the root
goal, maximal probability of the root goal being achieved, etc. The standard approach to solve these
problems is based on a simple bottom-up algorithm, described first by Schneier in [101] and then
formalized for attack trees in [81] and for attack–defense trees in [68]. In this classical approach,
the expert estimates the input values quantifying the property of interest at the non-refined nodes
(i.e., basic actions). The values for the remaining nodes are then computed in a bottom-up way,
depending on the type of the refinement of the node. While computationally fast – linear in the
number of nodes in the tree – this bottom-up procedure has two main drawbacks: it takes only one
quantitative property into account at a time and it assumes that all nodes in the tree are independent.
In this section, we present formal frameworks that improve the classical bottom-up approach

and lift some of its limitations. First, we focus on attack–defense trees with independent nodes.
In Section 5.1, an approach based on Pareto frontier for multi-objective quantitative evaluation
is described. Section 5.2 discusses how to make use of integer linear programming to tackle the
problem of optimal allocation of defender’s resources. The remaining two sections present the
frameworks where a special type of dependencies between the nodes is considered, namely where
several nodes may carry the same label, i.e., represent exactly the same action. An interesting
approach for approximating the minimal cost of an attack vector in attack trees with repeated
leaves is described in Section 5.3. The work presented in Section 5.4 shows how to extend the
classical bottom-up algorithm to attack–defense trees with repeated basic actions.
In contrast to the methods covered by Section 6 and 7, the current section concentrates on

static approaches that disregard the order or time in which actions are executed by the actors. A
comparative view for the approaches described in Section 5, 6, and 7 is given in Table 4.

5.1 Pareto efficient strategies in attack–defense trees

ADTree
semantic
evaluation

assignment of
cost and prob.

algorithmic
evaluation

Pareto-optimal
strategies

Fig. 11. Pareto efficient strategies by [11]

In [11], Aslanyan and Nielson provide a for-
mal approach to the problem of multiple pa-
rameter optimization in ADTrees. Every set
of basic actions of the actors (called strategy
throughout this section) is assigned a vector
v = (v1, . . . ,vk) of k ≥ 1 values. Some of the
values might represent costs associated with
execution of the actions of the root player that belong to a given strategy. Among them there might
also be the probability of the root goal being achieved when the strategy is executed (probability of
success). The aim is to determine the strategies that achieve the root goal and optimize all of the
values at once. Such optimal strategies are defined in terms of Pareto efficiency, see Fig. 11. A strategy
is optimal if its corresponding vector v is Pareto efficient in the set of vectors corresponding to all
strategies, i.e., if every other vector that offers an improvement wrt v on at least one coordinate
entails a worsening on some other coordinate.
The underlying assumption of the whole framework is the independence of basic actions per-

formed by the actors. The main focus is put on the class of so called linear trees, i.e., trees where
every action appears exactly once. The basic model of ADTrees introduced in [68] is extended with
a negation operator, which allows for capturing the situation in which execution of an action by an

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2019.

Beyond 2014: Formal methods for attack tree-based security modeling 1:17

actor makes it impossible for them to perform some other action. Aslanyan and Nielson use this
operator also for defining a specific class of ADTrees, called polarity–consistent trees (PCTrees), in
which multiple occurrences of basic actions are allowed under some constraints.

Each of the basic actions is assigned two probability values: a probability of achieving the goal it
represents in the case of attempted execution, and a probability of achieving the goal in the case
when the action is not executed (in the Boolean case, where the problem of satisfiability of the root
goal is tackled, these values are 1 and 0, respectively). Furthermore, each of the actions is decorated
with a vector c = (c1, . . . , cm) ofm ≥ 0 real-valued costs. In this setting, two approaches to the
problem of determining Pareto optimal strategies that maximize the probability of success and
minimize costs are considered. In the first one, called semantic evaluation, the probabilities and costs
corresponding to all possible strategies (with the cost of a strategy being a coordinate-wise sum of
costs of the actions that constitute the strategy) are computed, and only then the Pareto optimal
values are selected. This method has the drawback of high complexity, due to the fact that the
number of strategies in an ADTree is exponential in the size of the tree. To overcome this difficulty,
the authors of [11] develop an alternative method, called algorithmic evaluation. For the case when
m = 0, this method is a combination of two standard bottom–up procedures, and determines the
lowest and the highest values of probability of success in a linear tree, in the time linear in the
size of the tree. Boolean version of this problem is solved similarly in the class of PCTrees. In the
Boolean variant the result reflects the influence of the actions of the other actor on the actions of
the root actor. For instance, the result can highlight the fact that the root goal is always achieved,
no matter what the other actor does, or that the other actor can select actions that ensure that the
root goal cannot be achieved by the root actor. The algorithmic evaluation method in the case of
m = 1, that is, in the presence of both probability and a single cost, propagates up to the root of a
tree only the Pareto efficient values. In a linear tree, the result obtained at the root coincides with
the result of the semantic evaluation, and, again, is obtained in the time linear in the size of the tree.
It is worth noticing that the complexity of the algorithmic evaluation increases with the growth of
the numberm of costs associated with the basic actions, i.e., for any fixedm there is an ADTree
T of size linear inm and with the number of unique Pareto optimal strategies exponential in the
number of nodes of T . The computation of the set of Pareto optimal solutions for the probability
and cost parameters has been automated in the Attack Tree Evaluator tool (ATE) [9, 10].
In the framework of [11] the possible behavior of the actors is described by sets of actions

that they execute. This description does not take the order of the actions’ execution into account.
To additionally capture the order of execution of actions, Aslanyan et al. develop a framework
based on stochastic two-player games, in [13] (see Section 7.3). Contrary to the approaches for
multi-parameter optimization in ADTrees based on timed automata (cf. Section 6.2), the methods
presented in [11] do not capture the possibility of a single action being executed multiple times.

5.2 Selection of an optimal set of countermeasures using integer linear programming

The work of Kordy and Wideł presented in [72] focuses on advising the defender how to distribute
available funds among possible countermeasures. Given the budget of the defender and an AND/OR
ADTree decorated with costs of execution of the basic actions of the actors, the aim is to select a set
of basic actions the defender can afford, that optimizes some value, e.g., maximizes the necessary
investment of the attacker in achieving the root goal. Optimization problems are formulated in
terms of integer linear programming (ILP) [24]. The approach is depicted in Fig. 12. It assumes that
there are no repeated basic actions in the ADTree under consideration.

To identify the attacker’s strategies and ways of their prevention, a novel semantics for ADTrees
is developed. Under this semantics, called defense semantics, ADTrees are interpreted as sets of

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:18 Wojciech Wideł, Maxime Audinot, Barbara Fila, and Sophie Pinchinat

pairs of the form (A,D), where A and D are sets of basic actions of the attacker and the defender,
respectively. The meaning of the pair (A,D) belonging to the defense semantics of an ADTree is the
following: the set A describes a rational strategy of the attacker, i.e., there exists a (possibly empty)

ADTree

basic
assignment

overall budget

optimization
goal

integer linear
programming

problem

integer linear
programming

solver

optimal set
of counter-
measures

Fig. 12. Linear programing for ADTrees by [72]

set D ′ of basic actions of the
defender such that A is a min-
imal (wrt the inclusion) set of
basic actions execution of which
achieves the root goal if the
countermeasures implemented
by the defender are exactly those
from D ′. The set D is a minimal
set of countermeasures imple-
mentation of which makesA un-
feasible. Therefore, the defense
semantics provides the defender
with the information on possible
behavior of a rational attacker,
and on possible ways of countering such a behavior (note that the attacker’s strategies that cannot
be countered are not kept in the semantics). Given the defense semantics, the defender has an
incentive to determine a set of countermeasures they can afford, implementation of which optimizes
some value. The optimization problems considered in [72] include: maximization of the number
of unfeasible attacker’s strategies; maximization of the investment of the attacker necessary to
achieve the root goal; and minimization of the impact originating from feasible attacker’s strategies.
Nevertheless, the general structure of the functions to be optimized makes the formulation of other
optimization problems possible as well.
Kordy and Wideł encode the relations between the basic actions executed by the defender and

the elements of the defense semantics using appropriate Boolean variables and linear inequalities.
Together with a linear function of the above-mentioned variables to be optimized (e.g., describing
the necessary investment of the attacker) this system of inequalities constitutes an ILP problem.
The authors of [72] implement a prototype tool which translates an ADTree decorated with costs
into a specification of a relevant ILP problem accepted as input by a free ILP solver lp_solve [23].
The specification is passed to lp_solve and the set of countermeasures implementation of which
optimizes the given function is returned.

5.3 Efficient approximation of the cost of a cheapest attack

The focus of Buldas et al. in [30] is to provide proofs that for some attack trees no profitable attack
vectors exist. Formally, the problem is addressed by determining whether the cost of a cheapest
attack is greater than a given threshold. This is partially achieved by evaluating a lower bound
for the cost of a cheapest attack via a combination of a weight reduction technique and a standard
bottom-up procedure, as illustrated in Fig. 13.
This work considers standard AND/OR attack trees with possibly repeated basic actions. Attack

trees are modeled with monotone Boolean functions over propositional variables representing
successful executions of particular basic actions by the attacker. An attack in a tree is a minterm
of the corresponding formula, i.e., a conjunction of some of the variables that implies the truth
of the whole formula. Given a weight function w that assigns non-negative, real values to the
propositional variables, the cost of an attack is the sum of weights of its variables. For a tree Φ, a
weight functionw , and a profit threshold K , the aim is to determine whether it is profitable for the

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2019.

Beyond 2014: Formal methods for attack tree-based security modeling 1:19

attack tree

basic assign-
ment of cost

certificate

weight
reduction

attack
tree with
modified

assignment
of cost

bottom-up
procedure

lower bound for
the cost of a

cheapest attack

Fig. 13. Approximation of the minimal cost of an attack by [30]

attacker to execute an attack, i.e., whether the weight of a cheapest attack in Φ, denoted withw(Φ),
does not exceed K . This problem can be formulated in terms of the weighted monotone satisfiability
problem, which is known to be NP-complete [30]. To bypass the complexity of this problem, the
authors of [30] propose a method for computing a lower bound forw(Φ), which is then compared
with K . The quality of the obtained lower bound is indicated by the relative error of the method, i.e.,
by the ratio of the difference between the upper bound and the lower bound to the lower bound.
The lower bound for w(Φ) is obtained in two steps. First, a weight reduction technique is

employed. For every propositional variable x that appears multiple times in the formula Φ, each
of its occurrences is replaced with a new variable, and the weight of x is distributed among the
new variables, i.e., the sum of weights of the new variables is equal tow(x). Information on how
the weights of repeated variables of Φ should be distributed among their occurrences is called
a certificate for Φ. In the propositional formula obtained after this step, every variable appears
exactly once. The exact cost of the cheapest attack in this new tree can be therefore evaluated by
the classical bottom-up procedure, in which the values assigned to the leaf nodes are propagated up
to the root of the tree, using the sum at the AND nodes and the minimum at the OR nodes. This exact
cost is computed in the second step of the method. It provides a lower bound forw(Φ). Furthermore,
Buldas et al. prove that if in every subformula of the form G ∧ F of Φ the subformalæ G and F
have at most one variable in common, then this lower bound is actually equal tow(Φ). If the lower
bound is greater than the profit K , then it is not profitable for the attacker to conduct an attack.

Once a certificate for Φ is known, it is computationally easy to verify it, that is, to check whether
the lower bound for the cost of the cheapest attack in Φ that it provides exceeds K . The choice of
a certificate that would achieve the best approximation ofw(Φ) remains problematic. It is worth
noting that the exact value ofw(Φ) can be obtained using methods of [73] in a time linear in the
number of nodes of a tree and exponential in the number of repeated basic actions (cf. Section 5.4).

5.4 Quantitative analysis of attack–defense trees with repeated actions

ADTree
with clones

attribute
domain

quantitative
evaluation using
set semantics

=

enhanced bottom-
up evaluation

Fig. 14. Quantifying ADTrees with clones by [73]

It is known that if a tree contains repeated basic
actions, the standard bottom-up procedure for quan-
titative analysis of attack(–defense) trees might re-
turn distorted results. This issue is tackled by Kordy
and Wideł in [73], in the case of standard AND/OR
ADTrees. The authors investigate conditions ensur-
ing that the result of the bottom-up procedure per-
formed in the presence of repeated basic actions
is correct, and develop an alternative evaluation
method in the case when these conditions are not
satisfied, as schematized in Fig. 14.

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:20 Wojciech Wideł, Maxime Audinot, Barbara Fila, and Sophie Pinchinat

In [73], two nodes labeled with the same basic action represent exactly the same single instance
of the action. Such nodes are called clones. To interpret ADTrees with clones, this work uses the set
semantics introduced in [27]. Under the set semantics interpretation, an ADTree is a set of pairs
(A,D), whereA is a set of basic actions of the attacker and D is a set of basic actions of the defender,
such that if all of the actions from A are executed, and none of the actions from D is executed, then
the root goal is achieved.

Two approaches for evaluating quantities (called attributes) on ADTrees with clones are presented.
Both of them start with estimating input values for all basic actions. In the first approach, the
attribute is evaluated directly on the tree by using the standard bottom-up algorithm. In the second
one, the set semantics of the tree is constructed, and the attribute value corresponding to the tree
is obtained by combining the values of basic actions composing the pairs (A,D). While the first of
the two methods has complexity linear in the number of nodes in the tree, it might fail to provide
the correct result, because the values of the clones might be counted several times. The second
approach returns a value that indeed corresponds to the aspect of the scenario under consideration,
but requires constructing the semantics, which might be computationally expensive. Therefore, it
is desirable to ensure that the fast method returns the correct result.

Both of the methods drafted above can be formalized in terms of attribute domains [68, 81]. The
authors of [73] focus on attribute domains induced by idempotent commutative semirings (D, ⊕, ⊗).
They prove that if there are no clones in a tree, or if both operations of the underlying semiring
are idempotent, then the two methods yield the same result. This means that, under the above
assumptions, the correct result of the evaluation on the set semantics can be obtained with the fast
bottom-up procedure.

Kordy and Wideł also identify a condition that, for the case when the tree contains clones or the
⊕ operation is not idempotent, allows for an alternative method for evaluation of attributes that
might be computationally less expensive than constructing the set semantics. The idea behind the
method is to first determine which of the repeated basic actions of the attacker appear in every
set A such that the pair (A, ∅)4 is an element of the set semantics of the tree. Such a basic action is
called necessary clone and can be recognized in time linear in the number of nodes of the tree. The
remaining repeated basic actions are called optional clones. First, all of the necessary clones are
assigned value equal to the neutral element for ⊗. Then, for every subset of the optional clones, the
values assigned to the optional clones are temporarily modified (some of them are assigned the
neutral, and some of them the absorbing element for ⊗) and the bottom-up procedure is performed.
Intuitively, due to this modified assignment of values, some of the optional clones are ignored by
this bottom-up procedure, while others are selected whenever possible. The outcomes of all these
bottom-up procedures are eventually combined and the result is modified in a way that ensures
that the original values assigned to clones are taken into account exactly once.
The time complexity of the above method is linear in the size of a tree and exponential in the

number of clones. It is suitable in particular for evaluating the minimal cost of an attack, and
therefore for solving instances of the weighted monotone satisfiability problem (cf. Section 5.3).

6 TIMED AUTOMATA-BASED ANALYSIS

While being able to provide a security expert with valuable information, the analysis methods
presented in the previous section share common limitations. In particular, they do not take into
account the temporal dependencies between attack steps or the capability of the actors to attempt
to execute a single action multiple times. Interpreting attack(–defense) trees using timed automata

4 The pairs of the form (A, ∅) represent scenarios in which the attacker wins no matter what the defender does.

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2019.

Beyond 2014: Formal methods for attack tree-based security modeling 1:21

does not only allow to lift these limitations, but also enables employment of the state of the art
model checking tools for the purpose of the quantitative analysis.
This section focuses on approaches based on timed automata. A way of interpreting attack

trees using priced timed automata and an application of such interpretation to the multi-objective
quantitative evaluation of attacks is described in Section 6.1. In Section 6.2, an approach for analysis
of attack–defense trees using stochastic timed automata, allowing to take cost, time, and probability
into account simultaneously, is presented. Finally, Section 6.3 is devoted to attack–defense diagrams,
an expressive model for analyzing attack–defense scenarios that can be seen as an extension of
attack–defense trees.

6.1 Attack tree analysis with priced timed automata

attack tree

cost structure

network of priced
timed automata

model checking with
Uppaal Cora

query in weighted CTL

answer to the query

Fig. 15. PTA-based analysis of attack trees by [75]

In [75], Kumar et al. develop a
framework for multi-objective
quantitative analysis of attack
trees, exploiting themodel check-
ing techniques. As illustrated in
Fig. 15, attack trees are trans-
formed into networks of priced
timed automata (PTA) [21]which
are then given to the Uppaal
Cora model checker [1] where
they are queried for quantitative
properties of interest. The objective is to provide an effective way of computing the necessary
resources, e.g., time, skills, etc., and the corresponding attack paths leading to the achievement of
the root goal of the attack tree. The method also allows to rank the attack paths according to a
given quantitative criterion, for instance identify ten cheapest attack paths.
The model of attack trees considered in this work contains classical AND and OR nodes (called

gates) as well as temporal gates SAND and SOR. The attack tree leaves are augmented with structures
of costs (e.g., time, skills, resources, damage, difficulty) associated with execution of basic actions
(also called basic attack steps) that they represent. Basic actions are supposed to be non-repeatable,
i.e., once executed, a basic action is considered successful if encountered later in the tree. Shared
subtrees are allowed to reduce the size of the tree, and are treated as if the subtree was actually
duplicated at the positions where it appears in the tree.
The authors of [75] translate attack trees into priced timed automata – a quantitative model

that combines clocks (to model time, as in timed automata) with a cost function assigning costs to
locations and actions of the automaton. Basic actions and gates of the attack tree are translated
into a network of PTAs. The Uppaal Cora model checker [22] – an extension of Uppaal [78] with
cost – is then employed to transform the PTAs’ network into a single PTA, by an operation called
parallel composition of PTAs. Parallel composition synchronizes the transitions of the individual
PTAs via joint signals: when the PTA of a child node sends a signal, it triggers a transition in
the PTA of its parent node. Quantitative properties to be checked on the tree are expressed using
weighted CTL [29] that extends the branching temporal logic CTL with costs. The verification of the
properties is ensured by Uppaal Cora allowing to check formulæ of weighted CTL. Optimal attacks
can be computed if all objective values but one are fixed. Pareto frontier can also be computed for
multi-objective optimization. Finally, the PTA-based analysis of attack trees has been integrated
into the ATTop platform [76].

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:22 Wojciech Wideł, Maxime Audinot, Barbara Fila, and Sophie Pinchinat

In contrast to [39] (cf. Section 6.2) where timed automata have been used to analyze ADTrees,
the work presented in [75] does not model the defender explicitly, nor does it cover probability.

6.2 Attack–defense tree analysis with timed automata

The main goal of the framework developed in [39] is to model temporal behavior of the attacker in
an ADTree and to exploit this modeling for the purpose of quantitative analysis of the underlying
attack–defense scenario. Gadyatskaya et al. propose a way of encoding the actors and their basic
actions as networks of timed automata [5]. Such a network is then provided as input to the Uppaal
model checker [20, 78], which allows for extracting strategies of the actors satisfying particular
properties, as schematized in Fig. 16. The standard model of ADTrees with OR and AND refinements
only is considered. The success or failure of the attacker is seen as a result of the evaluation of the
propositional formula corresponding to the tree.

ADTree

stochastic at-
tacker’s profile

defender’s profile

assignment of
cost and prob.

network of
stochastic

timed automata

model checking
with Uppaal

quantitative query

answer to the query

Fig. 16. Uppaal-based analysis of ADTrees by [39] and [47]

First, an ADTree is used to derive
a directed labeled graph, called by
the authors of [39] an attack–defense
graph. This graph represents possi-
ble realizations of the scenario mod-
eled by the tree, i.e., combinations of
all sets of actions executed by the de-
fender with all potential sequences of
the actions executed by the attacker.
The attack–defense graph is used to
define the attacker’s profile, which
models the capabilities (what are the
actions that the attacker can execute
and what are the properties of their execution times) and preferences (the probability that a given
action is chosen) of the attacker in any situation that can occur in the scenario. Formally, the attacker
is modeled as a timed transition system [50] equipped with a description of its non-deterministic
behavior. The attack–defense graph and the profile of the stochastic attacker are combined to create
a stochastic timed transition system that models possible realizations of the scenario. Given a set
of actions executed by the defender, and taking into account the stochasticity of the attacker, the
probability of successful execution of basic actions, and the cost of attempting their execution,
Gadyatskaya et al. derive explicit formulæ for the probability of the attacker’s success, and the
expected cost within a given time bound. This naturally leads to the problem of choosing the
attacker’s profile that optimizes these values.
The final transition system is encoded using network of stochastic timed automata, in a way

that ensures that the runs of the network correspond to sequences of transitions in the system.
The encoding is performed in a modular manner, i.e., the network consists of an automaton that
models the attacker, an automaton modeling the defender, and an automaton for each of the
basic actions of the attacker, that models possible outcomes of executing the action. The authors
of [39] implemented the encoding procedure, and the implementation outputs a specification of the
network that is accepted as input by the Uppaal model checking engine [20], [78]. Using Uppaal,
it is then possible to, e.g., determine the probability of a successful attack or the expected cost of
succeeding (for a specific attacker profile) within a given time bound.

The approach from [39] is expanded upon by Hansen et al., in [47], with three novelties. First, a
dependency between the total cost of execution of an action and the time spent on the execution
of the latter is introduced. Instead of being equipped with a real value of cost, as in [39], every

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2019.

Beyond 2014: Formal methods for attack tree-based security modeling 1:23

basic action in [47] is assigned a relative cost of execution per time unit. Second, Hansen et al.
formalize a profile of a cost-preserving attacker. The probability of a given action being executed
by a cost-preserving attacker depends on the relative cost of the action and the maximal possible
time needed for its execution. The lower the impact of the execution of an action on the attacker’s
budget, the more likely the attacker is to execute the action. Since a cost-preserving attacker might
not behave in a way that maximizes the probability of success, a parametrization of such an attacker
is proposed. In the case of the parametrized cost-preserving attacker, the probabilities based on the
impact of the execution of an action on the attacker’s budget are additionally weighted. Finally, a
method for selecting a configuration of parameters that minimize the expected cost of an attack in
a given ADTree and under given stochastic defender is proposed. For a given set of configurations
of parameters, a number of simulations of the attack–defense scenario is performed for each of the
configurations, and the results (costs of success) are subject to analysis of variance. As long as the
analysis of the variance detects differences between the sets of results, some of the configurations
are being removed, additional simulations are performed for the remaining configurations, and
the results are tested again. When no differences are detected, the results of the simulations are
assumed to originate from identically distributed random variables. In particular, it is assumed that
all of the remaining configurations of the parameters yield the same (optimal) expected cost of the
attacker being successful within the given time bound.

In order for the results of the analysis proposed in both [39] and [47] to be meaningful, the under-
lying ADTree should satisfy some properties, which seem to be implicitly assumed. Computations
of the probability of the attacker’s success rely on the assumption of mutual independence of all
basic actions. Furthermore, if the actions under an AND node of the attacker can be executed in
parallel, this information is lost in the automata interpretation of the tree, since the final behavior
of the attacker is represented as a sequence of actions. Finally, it is assumed that every action of
the attacker can be executed an unbounded number of times, until it is completed successfully.

6.3 Attack–defense diagram’s analysis with stochastic timed automata

Being aware of drawbacks and limitations of the original ADTree model, in particular its inherent
inability for capturing dynamic aspects of evolving scenarios, Hermanns et al. proposed a model
called attack–defense diagrams (ADDs) [51]. While essentially being directed graphs with labeled
nodes and arcs, ADDs offer an impressive expressive power due to the number of new ways
the basic actions can interact with each other (not only by achieving goals through AND and OR
refinements or countering goals of the other actor). This, however, comes at a cost of increased
complexity.
ADDs extend ADTrees in several dimensions. Rather than trees, they are directed graphs that

admit cycles. Their basic components are basic events (instead of classically used basic actions)
which represent not only actions that the actors can perform, but also time-driven events that might
occur independently of the actors. Single root node representing the main goal of a scenario in an
ADTree is replaced with two sink nodes (nodes with no outgoing edges), each of them corresponding
to the main goal of one of the two actors. In a particular realization of the scenario, the actors
perform actions, thus changing their status from undefined to true or false (depending on whether
the action is executed successfully or not). These logical values are propagated throughout the
diagram via the refined nodes. The result of a realization of the scenario is established when one of
the sink nodes changes its status to true (the actor whose goal is represented by this sink wins) or
false (the other actor wins). If both sinks become true at the same time, then the result is a draw.
In addition to AND and OR, ADDs support eight new types of nodes: COST, IF, RE, TR, SAND, SOR,

NOT, SWP. These include two conditional gates: COST that propagates the true values only if the

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:24 Wojciech Wideł, Maxime Audinot, Barbara Fila, and Sophie Pinchinat

amount of one of the resources spent by the attacker so far satisfies a specified bound; and IF
that propagates the true values coming from inputs only if a specific condition is satisfied. The
possibility of multiple executions of a single event or causal and conditional dependencies between
events can be modeled with the reset (RE) and trigger (TR) gates. To capture sequential behavior,
one can use the SAND and SOR gates. Finally, NOT and SWP swap between true and false and between
true and undefined, respectively.

ADDiagram

assignment of
cost, time, prob.

actors’ strategies

stochastic
timed automata

statistical
model checking

quantitative query

answer to the query

Fig. 17. STA-based analysis of ADDs by [51]

The framework proposed
by Hermanns et al. is
sketched in Fig. 17. Ba-
sic events are decorated
with three attributes: cost
of attempted execution (in
the case of player-driven
events), probability of suc-
cessful execution, and ex-
ecution time (the amount
of time elapsed between ex-
ecuting an action and the
point when the outcome of the execution is known). In consequence, there is an incentive for
the actors to determine strategies (i.e., recipes telling the actors at which points in time or under
what circumstances to perform particular actions) that result in achieving the main goal while
optimizing some of the above parameters. In order to perform such analysis, the authors use
stochastic timed automata (STA) [26]. Each of the nodes of the underlying diagram is translated into
an STA which models attempted execution of a basic event (if the node represents a basic event) or
the behavior of a gate in the presence of input (if the node is not a basic event). Similarly, a way of
encoding strategies of the actors as STAs is presented. Special automaton ensures the correct order
of propagation of the logical values through the automata and synchronization between them. The
parallel composition of all the above automata, an STA itself, constitutes semantics of ADDs which
corresponds to the possible realizations of the modeled attack–defense scenario under the given
pair of strategies.

Analysis of STAs is known to be computationally difficult. In particular, determining a strategy
optimal wrt the probability of reaching demanded state is in general case undecidable [28]. Hence,
in order to address questions such as “what is the probability of success under given strategy?” or
“what is the expected cost of a successful attack under given strategy?” Hermanns et al. employ
tools for statistical model checking, namely the Modest tool-set [46, 49]. The values of interest are
obtained by running a number of simulations and analyzing the resulting traces.

7 PROBABILISTIC ANALYSIS

The standard bottom-up algorithm sketched by Schneier in [101] can be applied to compute the
probability of a successful attack scenario modeled with an attack tree. To do so, one needs to assign
probability values to the leaves of the tree and then propagate them recursively to the parent nodes,
according to the following formulæ: for a node havingk childrenwith respective probabilitiespi , one
gets 1 − Πk

i=1(1 −pi) if the node is disjunctive, and Πk
i=1pi if the node is conjunctive. However, such

a computation has two main drawbacks. First, it requires the user to provide the input probability
values for all basic actions. Such data are hardly available and thus often replaced with historical
frequency estimations, i.e., how many times the action was successfully executed over a given
period of time, in the past. However, frequency and probability are not the same measure: in this

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2019.

Beyond 2014: Formal methods for attack tree-based security modeling 1:25

context, frequency is about the past and probability is about the future. Second, a quick look at
the above formulæ suffices to notice that such bottom-up computation procedure assumes that all
basic actions are independent. This assumption, however, is rarely reflected in real-life situations,
where most of the basic actions composing the attacks are strongly dependent on each other.

In this section, we present how the probabilistic security analysis with attack trees has evolved
since the proposal of Schneier and how formal methods can improve it from the usability point of
view. We start, in Section 7.1, with a method computing a probability distribution for an attack
tree instead of a single probability value. In Section 7.2, we describe how to augment ADTrees
with Bayesian networks to capture the dependencies between the basic actions involved in an
attack-defense scenario. Stochastic games are used in Section 7.3 to perform probabilistic analysis
of ADTrees, and finally, Section 7.4 uses probabilistic model checking to analyze attack trees.

7.1 Propagation of probability distribution on attack trees

The work of Arnold et al. presented in [8] has been motivated by the observation that the probability
of an attack being successful increases with the time available to the attacker. In other words, “when
given enough time, any system can be compromised”. Inspired by this remark, the authors of [8]
develop a framework for time-dependent probabilistic analysis of attack trees. Instead of simple
probability values, probability distributions (expressing the probability as a function of time) are
assigned to the leaves of an attack tree, and are propagated up to its root node. Thanks to this
approach, one can estimate how much time is necessary so that the attacker succeeds with a given
probability, but also check whether within a given time the probability of success is not greater
than a critical threshold.
Attack trees considered in this work are composed of basic attack steps (BAS) represented by

the leaves, and the refined nodes labeled by one of the three possible gates: OR, AND, and SEQ. The
meaning of the OR and AND gates is standard. The sequential SEQ gate models that some basic steps
can only be executed after some other steps have been successfully completed. To represent the
distribution of its execution time, a cumulative distribution function (CDF) is assigned to every BAS.
Arnold et al. discuss that these CDFs can be obtained in two ways: either historical or empirical
data are provided to a fitting tool, such as G-Fit [104], which produces a matching CDF, or an
expert estimates the mean time t necessary to execute a BAS and the exponential distribution
exp(1/t) is employed. The use of the exponential distribution is justified by the fact that amongst
all distributions with a given mean, it is the one that has maximal entropy. To obtain the CDF
for the refined nodes, the distributions of the child nodes are aggregated using the operations of
minimum (for OR gates), maximum (for AND gates), and convolution (for SEQ gates) of CDFs.

attack tree with
probability distri-
butions at leaves

continuous-time
Markov chain
representation

minimization
procedure

probability
distribution for
the attack tree

Fig. 18. Probability distribution on attack trees by [8]

To gain on efficiency,
specific distributions,
called acyclic phase-
type distributions (APH),
are used. Indeed, any
continuous distribution
function can be ap-
proximated arbitrarily closely by an APH distribution [59]. In addition, APHs are closed under
minimum, maximum, and convolution. Phase-type distributions are probability distributions of
the time needed to reach a final state in specific continuous-time Markov chains (CTMC). However,
such a CTMC representation of an APH is not unique and the size of different representations
may vary substantially. Finding the smallest representation is necessary because the application of
minimum, maximum, and convolution operators may yield an exponential blow-up in the CTMC

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:26 Wojciech Wideł, Maxime Audinot, Barbara Fila, and Sophie Pinchinat

representation. Arnold et al. refer to existing polynomial-time algorithms that effectively compress
the size of APH representations [94] and that they have implemented in a prototype tool. The
approach is illustarted in Fig. 18.
To position this work in the context of previously existing methods, the authors of [8] show

that, in the case of classical attack trees, i.e., without SEQ gates, their time-dependent probabilistic
analysis is a conservative extension of the standard bottom-up evaluation for probability. In other
words, the time-dependent analysis may be seen as the static analysis for each point of time. This
means that the probability of success by time t (in the time-dependent analysis) is equal to the
probability that after time t the attack will be successful (computed in a standard bottom-up way).
Together with [88] (for attack modeling) and [58] (for attack–defense modeling), the work of Arnold
et al. is one of the rare approaches using probability distributions rather than probability points.
One of its notable characteristics is that, by suggesting the use of exponential distributions, it offers
a way to overcome the problem of providing input probability values for the leaves of attack trees.

7.2 Combining Bayesian networks and attack–defense trees

ADTree t with
dependent actions

Bayesian network
over actions from t

constraint
reasoning

expected probability
according to t

probability of a
given attack vector

probability of the most
probable attack vector

Fig. 19. Probability on ADTrees with dependencies by [71]

The objective of the approach
presented by Kordy et al. in [71]
is to lift the independence as-
sumption between basic ac-
tions underlying the original
bottom-up evaluation, and to
compute the probability of a
successful attack while taking
dependencies between basic ac-
tions into account. The frame-
work has been developed for
ADTrees [68], hence it also ap-
plies to classical attack trees without explicit countermeasure nodes. The authors of [71] propose
to complement an ADTree with a Bayesian network representing stochastic dependencies between
basic actions present in the tree. The two graphs – the ADTree and the accompanying Bayesian
network – are then translated into a semiring valuation, and a well-known algorithm called fusion
is applied to compute the probability of interest. The framework, illustrated in Fig. 19, has first
been presented in [70] and its extended version has been published in [71].
A Bayesian network [86] is a directed acyclic graph whose vertices correspond to variables

with finite domains and where edges represent which variables are dependent on each other. The
goal of a Bayesian network is to graphically depict a joint probability distribution over such a
finite set of variables. To do so, each vertex of a Bayesian network is equipped with a conditional
probability table expressing what is the probability of a vertex conditioned on its predecessor
vertices. The joint probability distribution p of a Bayesian network over n variables X1, . . . ,Xn is
given by p(X1, . . . ,Xn) = Πn

i=1p(Xi | pred(Xi)), where pred(Xi) denotes the predecessors of Xi in
the network.

In [71], an ADTree t is formally modeled as Boolean function ft whose set of variables, denoted
as vart , corresponds to basic actions of the tree. In this representation, basic actions are thus inde-
pendent. To capture possible stochastic dependencies between these actions, a Bayesian network,
denoted BNt , is constructed. The vertices of the Bayesian network BNt correspond to basic actions
of the ADTree t , i.e., to the variables of the Boolean function ft . The objective of BNt is to represent
dependencies that are not captured by the structure of the ADTree. Therefore, the edges of BNt

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2019.

Beyond 2014: Formal methods for attack tree-based security modeling 1:27

complement the refinement information present in t , and they need to be manually added by the
expert modeling the attack–defense scenario.
By multiplying5 Boolean function ft with the joint probability distribution pt of the Bayesian

network BNt one can express three main probability problems. Let x ∈ {0, 1}vart denote a vector
representing which actions from vart are attempted and which are not.

• If x represents an attack vector wrt t , i.e., an assignment satisfying ft , then the probability of
this vector being successful is expressed as ft (x) × pt (x).

• The probability of attacking successfully according to ADTree t is expressed as
P(t) = ∑

x∈{0,1}vart ft (x) × pt (x).
• The success probability of the most probable attack vector wrt t is given by
Pmax(t) = maxx∈{0,1}vart ft (x) × pt (x).

One can notice that the computation of P(t) and Pmax(t) grows exponentially with the number
of basic actions in t . Thus, the direct computation using the above formulæ is not possible in
the case of large, real-life ADTrees. Kordy et al. address this issue by using methods from the
domain of constraint reasoning. The objective is to represent the formulæ for P(t) and Pmax(t)
in a factorized form and make use of standard algorithms that exploit such a factorized form to
compute P(t) and Pmax(t) in an efficient way. It turns out that this task is equivalent to solving
classical inference problems over specific semirings. These problems can be solved using existing
local computation algorithm known as fusion or variable elimination. Its complexity is bounded by
a structural parameter, called tree width [98], and does not necessarily depend on the number of
the variables in the problem. The approach presented in [71] has been automatically tested with
the help of an open-source tool Nenok [91] providing a library of local computation algorithms,
including fusion.
Finally, the authors of [71] showed that the probability computations using their approach are

compatible with the propositional semantics for ADTrees, in the sense defined in [68]. This means
that the results obtained on propositionally equivalent ADTrees are equal. Also, if the ADTree does
not contain any dependent actions, the computation of P(t) coincides with the standard bottom-up
computation. A particularity of the approach of [71] is that the security model of ADTree and the
dependency model of Bayesian network are kept separated. The ADTree represents refinements
and countermeasures, while the Bayesian network captures additional dependencies between basic
actions that are not covered by the tree. This is in contrast with other existing approaches, like for
instance the one presented in [44], where the Bayesian network replaces an attack tree by covering
all its nodes (not only the basic actions) and refinements which may result in Bayesian networks of
large size. The bottle neck of the framework from [71] is the necessity of providing conditional
probability tables for all basic actions involved in the considered ADTree.

7.3 Stochastic game interpretation of attack–defense trees

To overcome the limitations of usual static analysis of scenarios modeled with ADTrees, Aslanyan et
al. propose a more dynamic approach in [13]. The formalism of ADTrees is extended with sequential
conjunctive and sequential disjunctive nodes, to capture temporal or causal dependencies between
the goals of the actors. With the basic actions being given an assignment of cost of attempted
execution and probability of successful execution, the aim is to synthesize strategies for the actors
that satisfy given constraints on the two parameters. Intuitively, a strategy provides an actor with
information on what actions to perform, as well as in which order or under which circumstances
particular actions should be executed. Formally, the strategies are represented as decision trees.

5To make this multiplication possible, the logical operators are expressed using algebraic operations: max for ∨ and × for ∧.

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:28 Wojciech Wideł, Maxime Audinot, Barbara Fila, and Sophie Pinchinat

They are derived from a specific stochastic two-player game (STG) [83] that the underlying ADTree
is transformed into.

ADTree

assignment of
cost and prob.

stochastic two-
player game

PRISM-games

DTMC semantics

PRISM-games
quantitative/

qualitative query

optimal strategies

answer to the query

Fig. 20. PRISM-games for ADTrees by [13]

In order to analyze anADTree,
taking the order in which ac-
tions are executed into account,
the authors of [13] propose a
way of transforming the ADTree
into an STG, see Fig. 20. To
explicitly reason about strate-
gies available to the players
in the stochastic game, they
use probabilisticmodel checking
techniques for stochastic games
based on the probabilistic alternating-time temporal logic with rewards (rPATL) [31]. This allows
for expressing and answering questions such as “can the defender ensure that the probability of
a successful attack is less than a given threshold?” or “what strategy of the attacker maximizes
the probability of a successful attack?”. An extension of rPATL [32] is employed to synthesize
memoryless strategies (or verify their existence) satisfying given constraints on both parameters
under consideration, i.e., a bound on the probability of a successful attack and a bound on the
expected cost of implementing a strategy by one of the actors. The actual analysis of the game is
performed by the PRISM-games tool [77]. Apart from answering the above-mentioned questions,
the tool can also present the Pareto optimal strategies (see Section 5.1; note however, that here the
expected, and not the exact, cost is considered).

Strategies of the actors in an ADTree are intuitively represented using a variant of decision trees.
Given a pair of strategies to be implemented by the actors, the possible realizations of the modeled
scenario are represented as a discrete-time Markov chain (DTMC) [92]. The equivalence between
those strategies and the ones originating from the corresponding STG, as well as ways of obtaining
the former given the latter, is presented. Finally, Aslanyan et al. implement a prototype tool that
translates an ADTree into a specification of the corresponding STG that is accepted as input by the
PRISM-games tool.

The presented framework is developed under the assumption that the sequential nodes present in
an ADTree cannot have non-sequential nodes among their ancestors. For the rest of this section let
us refer to a maximal subtree of an ADTree that does not contain sequential nodes as simply subtree.
We observe that the authors of [13] do not explicitly state the way in which they interpret multiple
occurrences of a single basic action in an ADTree. However, one can deduce from the procedure
constructing an STG that multiple nodes labeled with the same basic action and belonging to the
same subtree are interpreted as the same single instance of the action. On the contrary, multiple
occurrences originating from different subtrees are interpreted as distinct instances of the action.

7.4 Probabilistic model checking for attack trees

In [12], Aslanyan and Nielson develop a framework for quantitative analysis of AND/OR attack trees,
using probabilistic model checking of Markov decision processes (MDPs) with reward structure [95].
They introduce a logic for expressing quantitative properties that combine the probability of
success with the exact cost of attacks, and they develop a model checking algorithm for their
logic. An attack tree is translated into a Markov decision process, and the verification of the
aforementioned quantitative properties is reduced to the model checking of MDPs with reward
structure, as summarized in Fig. 21.

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2019.

Beyond 2014: Formal methods for attack tree-based security modeling 1:29

attack tree

success probabilities
and cost on actions

Markov decision
process with

reward structure

quantitative
query in erPCTL

model checking
answer to
the query

Fig. 21. Probabilistic model checking of attack trees by [12]

A Markov decision pro-
cess is an operational state-
transition model that com-
bines non-deterministic and
probabilistic transitions. A
reward structure adds a re-
ward (a positive integer)
to each transition. In the
Markov decision process resulting from a translation of an attack tree, non–deterministic transitions
represent the choice of the attacker between performing or not an action, and the probabilistic
transitions reflect the success or failure of the realization of actions. The choices of the attacker are
made in the initially chosen order over basic actions. In this work, basic actions are assumed to be
independent, so an arbitrary order can be fixed on the set of basic actions.

The logic introduced in the paper, namely the Probabilistic Computational Tree Logic with Exact
Rewards (erPCTL), is an extension of Probabilistic Computational Tree Logic (PCTL) [48] which is a
standard logic for MDPs, and the Probabilistic Computational Tree Logic with Rewards (rPCTL) [6],
which itself is an extension of PCTL. In contrast to the exact cost (which is independent from
probabilities), rPCTL considers only the expected cost of a run, i.e., the cost of a transition is
multiplied by the probability of firing this transition. The authors of [12] introduce the erPCTL
logic which adds two additional operators related to exact costs to rPCTL. The first operator asks
about the probability of success of attacks satisfying a given path formula whose cost is in a given
interval, and the second operator asks whether the costs of all attacks satisfying a given path
formula are in a given interval. Finally, the model checking algorithm for erPCTL is proposed. This
algorithm is polynomial in the size of the MDP, but the translation of an attack tree to an MDP
introduces an exponential blowup.

8 WHERE TO TAKE IT FROM HERE

Since the publication of the first result on the formalization of attack trees [81], a lot of fundamental
research on the topic has been performed. This effort led to numerous publications in renowned
venues in the field of foundations for security (CSF, ESORICS, POST), formal methods (FORMATS,
FASE), and logic (Journal of Logic and Computation, Fundamenta Informaticæ). The number of
recently published articles shows that, during the last decade, graphical security modeling became
a stand-alone research area, with several Ph.D. theses on the topic [9, 14, 74, 79, 96, 102], numerous
national and international research projects, and a dedicated dissemination event – the GraMSec
workshop (http://gramsec.uni.lu/).

In this survey, we focused only on foundational approaches providing mathematical background
for exploiting formal methods to support the attack tree-based modeling. However, more research
on attack trees in general has recently been performed. For instance, the work on attack tree
engineering in Isabelle allows one to automate the handling of attack trees [61, 62]. Software
development and testing based on security patterns has been supported with attack–defense trees
in [96, 97]. The usage of attack trees within the red teaming activities has been proposed in [19].
Practical case studies have also been performed [36, 37, 40]. Numerous other directions of using
attack tree-based modeling and analysis have been investigated, but they fall outside the scope of
this paper.
The next biggest challenge for the scientific community working in the field will be to make

sure that industry practitioners can take the full advantage of the formal solutions presented in this
article. A promising initiative in this direction has been taken by Kumar et al. who created the

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2019.

http://gramsec.uni.lu/

1:30 Wojciech Wideł, Maxime Audinot, Barbara Fila, and Sophie Pinchinat
T
a
b
l
e
4
.
Qu

a
n
t
i
t
a
t
i
v
e
a
p
p
r
o
a
c
h
e
s
a
n
d
e
x
a
m
p
l
e
q
u
e
r
i
e
s
(
A
T
s
t
a
n
d
s
f
o
r
a
tt
a
c
k
t
r
e
e
,
A
D
T
f
o
r
a
tt
a
c
k
–
d
e
f
e
n
s
e
t
r
e
e
)

Se
c.

M
od

el
Fo

rm
al
is
m

Ex
am

pl
e
qu

er
ie
s

Su
pp

or
ti
ng

to
ol

5.
1

A
D
T

Bo
tto

m
-u
p,

W
ha

ti
s
th
e
at
ta
ck

pr
ob
ab
ili
ty
?

AT
E

Pa
re
to

effi
ci
en
cy

W
ha

ti
s
th
e
m
ax
im

um
pr
ob
ab
ili
ty

an
d
th
e
m
in
im

um
co
st
of

an
at
ta
ck
?

5.
2

A
D
T

In
te
ge
rl
in
ea
r

W
ha

ti
s
an

op
tim

al
se
to

fc
ou
nt
er
m
ea
su
re
s
fo
r
a
gi
ve
n
bu
dg
et
?

Pr
ot
ot
yp

e
pr
og

ra
m
m
in
g

W
hi
ch

se
to

fc
ou
nt
er
m
ea
su
re
s
m
ax
im

iz
es

th
e
m
in
im

al
in
ve
st
m
en
to

ft
he

at
ta
ck
er
?

5.
3

AT
Bo

tto
m
-u
p,

Is
th
e
co
st
of

a
ch
ea
pe
st
at
ta
ck

gr
ea
te
r
th
an

a
gi
ve
n
th
re
sh
ol
d?

–
W
ei
gh

tr
ed
uc
tio

n
5.
4

A
D
T

Bo
tto

m
-u
p

W
ha

ti
s
th
e
m
in
im

al
co
st
/ti
m
e/
di
ffi
cu
lty

of
an

at
ta
ck
?

–
6.
1

AT
Pr
ic
ed

W
ha

ti
s
th
e
m
in
im

al
tim

e/
re
so
ur
ce
s/
sk
ill

le
ve
ln

ee
de
d
fo
r
a
su
cc
es
sf
ul

at
ta
ck
?

U
pp
aa

l
Co

ra
tim

ed
au
to
m
at
a

W
ha

ta
re
th
e
to
p-
10

w
or
st
at
ta
ck
s?

AT
To

p
6.
2

A
D
T

St
oc
ha
st
ic

W
ha

ti
s
th
e
pr
ob
ab
ili
ty

th
at

an
at
ta
ck

su
cc
ee
ds

w
ith

in
a
gi
ve
n
tim

e?
U
pp
aa

l
tim

ed
au
to
m
at
a

W
ha

ti
s
th
e
ex
pe
ct
ed

co
st
of

th
e
at
ta
ck
er

w
ith

in
a
gi
ve
n
tim

e
6.
3

A
D
D

St
oc
ha
st
ic

W
ha

ti
s
th
e
pr
ob
ab
ili
ty

of
su
cc
es
s
un

de
r
a
gi
ve
n
st
ra
te
gy
?

M
od

es
t

tim
ed

au
to
m
at
a

W
ha

ti
s
th
e
ex
pe
ct
ed

co
st
of

a
su
cc
es
sf
ul

at
ta
ck

un
de
r
a
gi
ve
n
st
ra
te
gy
?

7.
1

AT
Co

nt
in
uo

us
-ti
m
e

W
ha

ti
s
th
e
at
ta
ck

pr
ob
ab
ili
ty

di
st
ri
bu
tio

n
ov
er

tim
e?

Pr
ot
ot
yp

e
M
ar
ko

v
ch
ai
ns

7.
2

A
D
T

Ba
ye
si
an

W
ha

ti
s
th
e
pr
ob
ab
ili
ty

of
a
gi
ve
n
at
ta
ck

ve
ct
or
?

N
en

ok
ne
tw

or
k

W
ha

ti
s
th
e
pr
ob
ab
ili
ty

of
th
e
m
os
tp

ro
ba
bl
e
at
ta
ck

ve
ct
or
?

W
ha

ti
s
th
e
ex
pe
ct
ed

pr
ob
ab
ili
ty

of
at
ta
ck
in
g
ac
co
rd
in
g
to

an
A
D
Tr
ee
?

7.
3

A
D
T

St
oc
ha
st
ic

C
an

th
e
de
fe
nd

er
en
su
re
th
at

th
e
pr
ob
ab
ili
ty

of
PR

IS
M
-g
am

es
ga
m
es
,

a
su
cc
es
sf
ul

at
ta
ck

is
le
ss
th
an

a
gi
ve
n
th
re
sh
ol
d?

di
sc
re
te
-t
im

e
W
ha

ts
tr
at
eg
y
of

th
e
at
ta
ck
er

m
ax
im

iz
es

th
e
pr
ob
ab
ili
ty

of
a
su
cc
es
sf
ul

at
ta
ck
?

M
ar
ko

v
ch
ai
ns

7.
4

AT
M
ar
ko

v
W
ha

ti
s
th
e
m
in
im

um
co
st
of

a
su
cc
es
sf
ul

at
ta
ck
?

–
de
ci
si
on

Is
th
er
e
a
w
ay

to
at
ta
ck

th
e
sy
st
em

w
ith

in
th
e
av
ai
la
bl
e
bu
dg
et
?

pr
oc
es
se
s

Is
th
e
co
st
of

al
ls
uc
ce
ss
fu
la

tt
ac
ks

w
ith

in
a
gi
ve
n
bu
dg
et
?

Is
th
e
co
st
of

al
ls
uc
ce
ss
fu
la

tt
ac
ks

gr
ea
te
r
th
an

a
gi
ve
n
th
re
sh
ol
d?

W
ha

ti
s
th
e
m
ax
im

um
pr
ob
ab
ili
ty

of
an

at
ta
ck

w
ith

co
st
at

m
os
tx

?

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2019.

Beyond 2014: Formal methods for attack tree-based security modeling 1:31

ATTop platform [76]. ATTop acts as a bridge between the Uppaal model checker and existing
attack tree tools, in particular Attack Tree Evaluator (ATE) [10], ATCalc [7], and ADTool [41].
It allows the attack tree users to benefit from the analysis methods relying on timed automata,
like those described in Section 6, without necessarily being proficient in this formalism. Extending
ATTop to static quantitative approaches presented in Section 5 and stochastic solutions of Section 7
would be of great value for industrial users.

A platform like ATTop is helpful in analyzing attack trees, but it still requires a security expert to
input the attack tree to be analyzed. The second major challenge is thus concerned with automated
attack tree generation. As presented in Section 4, this direction has been extensively explored, and
prototypes like ATSyRA (for physical context) or the tool developed by the TREsPASS consortium
(for socio-technical context) exist. These tools have already proven that automating the generation
of security models is possible and produces exploitable trees. However, optimization work is
still necessary before such tools can handle large-scale systems. Automating the selection of
countermeasures, and thus going from attack trees to ADTrees, could also be envisioned. Ideally, a
fully-fledged tool chain should be able to generate attack trees from a domain-specific description of
a system or requirements, analyze possible attack vectors to identify the most vulnerable elements
of the system, and propose countermeasures to improve its security sufficiently.

An issue closely related to the automated generation of attack trees is the format and the meaning
of the node labels. On the one hand, the labels should be short so that visual aspect of attack trees is
not lost. On the other hand, labels that are too laconic may be a cause of a miscomprehension leading
to falsified analysis results. Identifying syntactically different labels that express the same goals
is necessary to make the process of attack tree creation composable. Composability is important
when trees are built semi-automatically by reusing attack tree libraries or previously constructed
models. A possible solution could be to apply text mining techniques to the documents describing
existing attack trees or their templates, in order to devise clear and unique labels.
From the semantical perspective, extending original attack trees with SAND (to model causality

and temporal relations) as well as formalizing the meaning of the repeated nodes is a good starting
point to deal with dependencies between actions or goals represented by the node labels. However,
other than causal or temporal dependencies may also be present in a security scenario. For instance,
an administrator of a Linux machine can either disable the root account or create a strong password,
but both measures cannot be used simultaneously. Thus, formalizing the semantics of a refinement
expressing conflicting or mutually exclusive options could be a useful addition to attack trees.
Furthermore, classical ADTrees contain a unique construct to denote countermeasures, but in
practice, preventive (e.g., security training) and reactive (e.g., blocking a credit card after its theft)
measures are not alike. A prevention makes the attack it protects against unfeasible, whereas a
reaction allows an attacker to act but disables the attack’s consequences. Consequently, depending
on the type of the countermeasure applied, the attacker will or will not execute some of their actions.
This is crucial for the security analysis, because it may impact the attack’s cost or probability.
We are currently working on developing formal foundations of ADTrees with preventions and
reactions to augment the expressive power of ADTrees and make them more appropriate for the
analysis of real-life security problems.

Regarding quantitative analysis of security, very few researchers have investigated the problem
of sensitivity analysis in the context of attack trees, namely, how even a minor modification of the
input values influences the output of the computation. Since getting the input values for attack tree
computations is a well-known practical problem, estimating the accuracy of the computation result
depending on the input error or uncertainty would be of great help to the users. The objective
would be to assess how precise the inputs need to be so that the analysis is not meaningless. Of

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:32 Wojciech Wideł, Maxime Audinot, Barbara Fila, and Sophie Pinchinat

course, due to the size of attack trees in practice, such sensitivity analysis cannot be performed
manually by simply playing with possible input values. An interesting, from the mathematical
perspective, research direction would be to explore standard variance or regression-based methods
or alternative approaches based on emulators to address this problem.

REFERENCES

[1] 2005. Uppaal Cora. (2005). Retrieved May 29, 2018 from http://people.cs.aau.dk/~adavid/cora/
[2] 2014. ATSyRA. (2014). Retrieved May 29, 2018 from https://gforge.inria.fr/plugins/mediawiki/wiki/building/index.php/
[3] 2018. ATSyRA Studio. (2018). Retrieved Nov 16, 2018 from http://atsyra2.irisa.fr/
[4] Rajeev Alur, Mikhail Bernadsky, and P. Madhusudan. 2004. Optimal Reachability for Weighted Timed Games. In ICALP

(LNCS), Vol. 3142. Springer, 122–133.
[5] Rajeev Alur and David Dill. 1990. Automata for modeling real-time systems. In ICALP (LNCS), Vol. 443. Springer,

322–335.
[6] Suzana Andova, Holger Hermanns, and Joost-Pieter Katoen. 2004. Discrete-time rewards model-checked. In FORMATS

(LNCS), Vol. 2791. Springer, 88–104.
[7] Florian Arnold, Axel Belinfante, Freark van der Berg, Dennis Guck, and Mariëlle Stoelinga. 2013. DFTCalc: A Tool for

Efficient Fault Tree Analysis. In SAFECOMP (LNCS), Vol. 8153. Springer, 293–301.
[8] Florian Arnold, Holger Hermanns, Reza Pulungan, and Mariëlle Stoelinga. 2014. Time-Dependent Analysis of Attacks.

In POST (LNCS), Vol. 8414. Springer, 285–305.
[9] Zaruhi Aslanyan. 2016. Stochastic Model Checking of Socio-Technical Models. Ph.D. Dissertation. Technical University

of Denmark, Denmark.
[10] Zaruhi Aslanyan. 2016. TREsPASS toolbox: Attack Tree Evaluator. (2016). Retrieved May 29, 2018 from https:

//vimeo.com/145070436 presentation of a tool developed for the EU project TREsPASS.
[11] Zaruhi Aslanyan and Flemming Nielson. 2015. Pareto Efficient Solutions of Attack–Defence Trees. In POST (LNCS),

Vol. 9036. Springer, 95–114.
[12] Zaruhi Aslanyan and Flemming Nielson. 2017. Model checking exact cost for attack scenarios. In POST (LNCS),

Vol. 10204. Springer, 210–231.
[13] Zaruhi Aslanyan, Flemming Nielson, and David Parker. 2016. Quantitative verification and synthesis of attack–defence

scenarios. In CSF. IEEE Computer Society, 105–119.
[14] Maxime Audinot. 2018. Assisted design and analysis of attack trees. Ph.D. Dissertation. University Rennes 1, France.
[15] Maxime Audinot, Sophie Pinchinat, and Barbara Kordy. 2017. Is My Attack Tree Correct?. In ESORICS (LNCS), Vol. 10492.

Springer, 83–102.
[16] Maxime Audinot, Sophie Pinchinat, and Barbara Kordy. 2018. Guided design of attack trees: a system-based approach.

In CSF. IEEE Computer Society, 61–75.
[17] Maxime Audinot, Sophie Pinchinat, François Schwarzentruber, and Florence Wacheux. 2018. Deciding the Non-

emptiness of Attack Trees. In GraMSec 2018 (LNCS), Vol. 11086. Springer, 13–30.
[18] Alessandra Bagnato, Barbara Kordy, Per Håkon Meland, and Patrick Schweitzer. 2012. Attribute Decoration of

Attack–Defense Trees. IJSSE 3, 2 (2012), 1–35.
[19] Matteo Beccaro. 2018. Attack Trees Methodology and Application in Red Teaming Operations. (2018).

https://conference.hitb.org/hitbsecconf2018pek/materials/D1T1%20-%20Attack%20Trees%20-%20Methodology%
20and%20Application%20in%20Red%20Teaming%20Operations%20-%20Matteo%20Beccaro.pdf D-HITBSecConf.

[20] Gerd Behrmann, Alexandre David, and Kim Guldstrand Larsen. 2004. A Tutorial on Uppaal. LNCS, Vol. 3185. Springer,
200–236.

[21] Gerd Behrmann, Kim Guldstrand Larsen, and Jacob Illum Rasmussen. 2004. Priced Timed Automata: Algorithms and
Applications. In FMCO (LNCS), Vol. 3657. Springer, 162–182.

[22] Gerd Behrmann, Kim Guldstrand Larsen, and Jacob Illum Rasmussen. 2005. Optimal Scheduling Using Priced Timed
Automata. SIGMETRICS Perform. Eval. Rev. 32, 4 (March 2005), 34–40.

[23] Michel Berkelaar, Kjell Eikland, and Peter Notebaert. 2005. lp_solve: Open source (Mixed-Integer) Linear Programming
system. (2005). Retrieved June 10, 2018 from http://lpsolve.sourceforge.net/5.5/ Version 5.5.2.5, dated September 24,
2016.

[24] Dimitris Bertsimas and John Tsitsiklis. 1997. Introduction to Linear Optimization. Athena Scientific.
[25] Stefano Bistarelli, Fabio Fioravanti, Pamela Peretti, and Francesco Santini. 2012. Evaluation of complex security

scenarios using defense trees and economic indexes. J. Exp. Theor. Artif. Intell. 24, 2 (2012), 161–192.
[26] Henrik C. Bohnenkamp, Pedro R. D’Argenio, Holger Hermanns, and Joost-Pieter Katoen. 2006. MODEST: A Composi-

tional Modeling Formalism for Hard and Softly Timed Systems. IEEE Trans. Software Eng. 32, 10 (2006), 812–830.

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2019.

http://people.cs.aau.dk/~adavid/cora/
https://gforge.inria.fr/plugins/mediawiki/wiki/building/index.php/
http://atsyra2.irisa.fr/
https://vimeo.com/145070436
https://vimeo.com/145070436
https://conference.hitb.org/hitbsecconf2018pek/materials/D1T1%20-%20Attack%20Trees%20-%20Methodology%20and%20Application%20in%20Red%20Teaming%20Operations%20-%20Matteo%20Beccaro.pdf
https://conference.hitb.org/hitbsecconf2018pek/materials/D1T1%20-%20Attack%20Trees%20-%20Methodology%20and%20Application%20in%20Red%20Teaming%20Operations%20-%20Matteo%20Beccaro.pdf
http://lpsolve.sourceforge.net/5.5/

Beyond 2014: Formal methods for attack tree-based security modeling 1:33

[27] Angèle Bossuat and Barbara Kordy. 2018. Evil Twins: Handling Repetitions in Attack–Defense Trees – A Survival
Guide. In GraMSec 2017 (LNCS), Vol. 10744. Springer, 17–37.

[28] Patricia Bouyer and Vojtech Forejt. 2009. Reachability in Stochastic Timed Games. In ICALP (2) (LNCS), Vol. 5556.
Springer, 103–114.

[29] Thomas Brihaye, Véronique Bruyère, and Jean-François Raskin. 2004. Model-Checking for Weighted Timed Automata.
In FORMATS/FTRTFT (LNCS), Vol. 3253. Springer, 277–292.

[30] Ahto Buldas, Aleksandr Lenin, Jan Willemson, and Anton Charnamord. 2017. Simple Infeasibility Certificates for
Attack Trees. In IWSEC (LNCS), Vol. 10418. Springer, 39–55.

[31] Taolue Chen, Vojtech Forejt, Marta Z. Kwiatkowska, David Parker, and Aistis Simaitis. 2013. Automatic verification of
competitive stochastic systems. Formal Methods in System Design 43, 1 (2013), 61–92.

[32] Taolue Chen, Vojtech Forejt, Marta Z. Kwiatkowska, Aistis Simaitis, and Clemens Wiltsche. 2013. On Stochastic Games
with Multiple Objectives. In MFCS (LNCS), Vol. 8087. Springer, 266–277.

[33] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martí-Oliet, José Meseguer, and Carolyn Talcott.
2007. All About Maude – A High-performance Logical Framework: How to Specify, Program and Verify Systems in
Rewriting Logic. Springer.

[34] Leonardo Mendonça de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In TACAS (LNCS), Vol. 4963.
Springer, 337–340.

[35] EAC Advisory Board and Standards Board. 2009. Election Operations Assessment – Threat Trees and Matrices and
Threat Instance Risk Analyzer (TIRA). (2009). Retrieved June 13, 2018 from https://www.eac.gov/assets/1/28/Election_
Operations_Assessment_Threat_Trees_and_Matrices_and_Threat_Instance_Risk_Analyzer_(TIRA).pdf

[36] Barbara Fila and Wojciech Wideł. 2019. Attack–defense trees for abusing optical power meters: A case study and the
OSEAD tool experience report. (2019). (To appear in GraMSec’19).

[37] Marlon Fraile, Margaret Ford, Olga Gadyatskaya, Rajesh Kumar, Mariëlle Stoelinga, and Rolando Trujillo-Rasua. 2016.
Using Attack–Defense Trees to Analyze Threats and Countermeasures in an ATM: A Case Study. In PoEM (LNBIP),
Vol. 267. Springer, 326–334.

[38] Olga Gadyatskaya. 2015. How to Generate Security Cameras: Towards Defence Generation for Socio-Technical Systems.
In GraMSec 2015 (LNCS), Vol. 9390. Springer, 50–65.

[39] Olga Gadyatskaya, René Rydhof Hansen, Kim Guldstrand Larsen, Axel Legay, Mads Chr. Olesen, and Danny Bøgsted
Poulsen. 2016. Modelling Attack–defense Trees Using Timed Automata. In FORMATS (LNCS), Vol. 9884. Springer,
35–50.

[40] Olga Gadyatskaya, Carlo Harpes, Sjouke Mauw, Cédric Muller, and Steve Muller. 2016. Bridging Two Worlds:
Reconciling Practical Risk Assessment Methodologies with Theory of Attack Trees. In GraMSec 2016 (LNCS), Vol. 9987.
Springer, 80–93.

[41] Olga Gadyatskaya, Ravi Jhawar, Piotr Kordy, Karim Lounis, Sjouke Mauw, and Rolando Trujillo-Rasua. 2016. Attack
Trees for Practical Security Assessment: Ranking of Attack Scenarios with ADTool 2.0. In QEST (LNCS), Vol. 9826.
Springer, 159–162.

[42] Olga Gadyatskaya, Ravi Jhawar, Sjouke Mauw, Rolando Trujillo-Rasua, and Tim A. C. Willemse. 2017. Refinement-
Aware Generation of Attack Trees. In STM (LNCS), Vol. 10547. Springer, 164–179.

[43] Jean-Yves Girard. 1987. Linear Logic. Theor. Comput. Sci. 50 (1987), 1–102.
[44] Marco Gribaudo, Mauro Iacono, and Stefano Marrone. 2015. Exploiting Bayesian Networks for the Analysis of

Combined Attack Trees. Electr. Notes Theor. Comput. Sci. 310 (2015), 91–111.
[45] David F. Haasl, Norman H. Roberts, William E. Veselay, and Francine F. Goldberg. 1981. Fault Tree Handbook. Technical

Report. Systems and Reliability Research, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Comission.
[46] Ernst Moritz Hahn, Arnd Hartmanns, Holger Hermanns, and Joost-Pieter Katoen. 2013. A compositional modelling

and analysis framework for stochastic hybrid systems. Formal Methods in System Design 43, 2 (2013), 191–232.
[47] René Rydhof Hansen, Peter Gjøl Jensen, Kim Guldstrand Larsen, Axel Legay, and Danny Bøgsted Poulsen. 2018.

Quantitative Evaluation of Attack Defense Trees Using Stochastic Timed Automata. In GraMSec 2017 (LNCS), Vol. 10744.
Springer, 75–90.

[48] Hans Hansson and Bengt Jonsson. 1994. A logic for reasoning about time and reliability. Formal aspects of computing
6, 5 (1994), 512–535.

[49] Arnd Hartmanns and Holger Hermanns. 2014. The Modest Toolset: An Integrated Environment for Quantitative
Modelling and Verification. In TACAS (LNCS), Vol. 8413. Springer, 593–598.

[50] Thomas Henzinger, Zohar Manna, and Amir Pnueli. 1992. Timed Transition Systems. In Workshop/School/Symposium
of the REX Project (Research and Education in Concurrent Systems) (LNCS), Vol. 600. Springer, 226–251.

[51] Holger Hermanns, Julia Krämer, Jan Krcál, and Mariëlle Stoelinga. 2016. The Value of Attack-Defence Diagrams. In
POST (LNCS), Vol. 9635. Springer, 163–185.

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2019.

https://www.eac.gov/assets/1/28/Election_Operations_Assessment_Threat_Trees_and_Matrices_and_Threat_Instance_Risk_Analyzer_(TIRA).pdf
https://www.eac.gov/assets/1/28/Election_Operations_Assessment_Threat_Trees_and_Matrices_and_Threat_Instance_Risk_Analyzer_(TIRA).pdf

1:34 Wojciech Wideł, Maxime Audinot, Barbara Fila, and Sophie Pinchinat

[52] Jin B. Hong, Dong Seong Kim, Chun-Jen Chung, and Dijiang Huang. 2017. A survey on the usability and practical
applications of Graphical Security Models. Computer Science Review 26 (2017), 1–16.

[53] Ross Horne. 2015. The Consistency and Complexity of Multiplicative Additive System Virtual. Sci. Ann. Comp. Sci. 25,
2 (2015), 245–316.

[54] Ross Horne, Sjouke Mauw, and Alwen Tiu. 2017. Semantics for Specialising Attack Trees Based on Linear Logic.
Fundam. Inform. 153, 1-2 (2017), 57–86.

[55] Marieta Georgieva Ivanova, Christian W. Probst, René Rydhof Hansen, and Florian Kammüller. 2015. Attack Tree
Generation by Policy Invalidation. InWISTP (LNCS), Vol. 9311. Springer, 249–259.

[56] Marieta Georgieva Ivanova, Christian W. Probst, René Rydhof Hansen, and Florian Kammüller. 2015. Transforming
Graphical System Models to Graphical Attack Models. In GraMSec 2015 (LNCS), Vol. 9390. Springer, 82–96.

[57] Ravi Jhawar, Barbara Kordy, Sjouke Mauw, Sasa Radomirovic, and Rolando Trujillo-Rasua. 2015. Attack Trees with
Sequential Conjunction. In SEC (IFIP AICT), Vol. 455. Springer, 339–353.

[58] Ravi Jhawar, Karim Lounis, and Sjouke Mauw. 2016. A Stochastic Framework for Quantitative Analysis of Attack–
Defense Trees. In STM (LNCS), Vol. 9871. Springer, 138–153.

[59] Mary A. Johnson and Michael R. Taaffe. 1988. The denseness of phase distributions. (1988). School of Industrial
Engineering Research Memoranda 88-20, Purdue University.

[60] Aivo Jürgenson and Jan Willemson. 2008. Computing Exact Outcomes of Multi-parameter Attack Trees. In OTM
Conferences (2) (LNCS), Vol. 5332. Springer, 1036–1051.

[61] Florian Kammüller. 2017. A Proof Calculus for Attack Trees in Isabelle. In DPM/CBT@ESORICS (LNCS), Vol. 10436.
Springer, 3–18.

[62] Florian Kammüller. 2018. Attack Trees in Isabelle. In ICICS (LNCS), Vol. 11149. Springer, 611–628.
[63] Florian Kammüller and ChristianW. Probst. 2013. Invalidating Policies using Structural Information. In IEEE Symposium

on Security and Privacy Workshops. IEEE Computer Society, 76–81.
[64] Florian Kammüller and Christian W. Probst. 2014. Combining Generated Data Models with Formal Invalidation for

Insider Threat Analysis. In IEEE Symposium on Security and Privacy Workshops. IEEE Computer Society, 229–235.
[65] Joost-Pieter Katoen and Mariëlle Stoelinga. 2017. Boosting Fault Tree Analysis by Formal Methods. In ModelEd, TestEd,

TrustEd (LNCS), Vol. 10500. Springer, 368–389.
[66] Robert M Keller. 1976. Formal verification of parallel programs. Commun. ACM 19, 7 (1976), 371–384.
[67] Barbara Kordy, Piotr Kordy, and Yoann van den Boom. 2016. SPTool - Equivalence Checker for SAND Attack Trees. In

CRiSIS (LNCS), Vol. 10158. Springer, 105–113.
[68] Barbara Kordy, Sjouke Mauw, Sasa Radomirovic, and Patrick Schweitzer. 2014. Attack–defense trees. J. Log. Comput.

24, 1 (2014), 55–87.
[69] Barbara Kordy, Ludovic Piètre-Cambacédès, and Patrick Schweitzer. 2014. DAG-based attack and defense modeling:

Don’t miss the forest for the attack trees. Computer Science Review 13-14 (2014), 1–38.
[70] Barbara Kordy, Marc Pouly, and Patrick Schweitzer. 2014. A Probabilistic Framework for Security Scenarios with

Dependent Actions. In iFM (LNCS), Vol. 8739. Springer, 256–271.
[71] Barbara Kordy, Marc Pouly, and Patrick Schweitzer. 2016. Probabilistic reasoning with graphical security models. Inf.

Sci. 342 (2016), 111–131.
[72] Barbara Kordy and Wojciech Wideł. 2017. How well can I secure my system?. In iFM’17 (LNCS), Vol. 10510. Springer,

332–347.
[73] Barbara Kordy and Wojciech Wideł. 2018. On quantitative analysis of attack–defense trees with repeated labels. In

POST (LNCS), Vol. 10804. Springer, 325–346.
[74] Rajesh Kumar. 2018. Truth or Dare: Quantitative security risk analysis via attack trees. Ph.D. Dissertation. University of

Twente, The Netherlands.
[75] Rajesh Kumar, Enno Ruijters, and Mariëlle Stoelinga. 2015. Quantitative Attack Tree Analysis via Priced Timed

Automata. In FORMATS (LNCS), Vol. 9268. Springer, 156–171.
[76] Rajesh Kumar, Stefano Schivo, Enno Ruijters, Buǧra M. Yildiz, David Huistra, Jacco Brandt, Arend Rensink, and Mariëlle

Stoelinga. 2018. Effective Analysis of Attack Trees: a Model-Driven Approach. In FASE (LNCS), Alessandra Russo and
Andy Andy Schürr (Eds.), Vol. 10802. Springer, 56–73.

[77] Marta Kwiatkowska, David Parker, and Clemens Wiltsche. 2016. PRISM-Games 2.0: A Tool for Multi-objective Strategy
Synthesis for Stochastic Games. LNCS, Vol. 9636. Springer, 560–566.

[78] Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. 1997. UPPAAL in a Nutshell. STTT 1, 1-2 (1997), 134–152.
[79] Aleksandr Lenin. 2015. Reliable and Efficient Determination of the Likelihood of Rational Attacks. Ph.D. Dissertation.

Tallinn University of Technology, Estonia.
[80] Aleksandr Lenin, Jan Willemson, and Dyan Permata Sari. 2014. Attacker Profiling in Quantitative Security Assessment

Based on Attack Trees. In NordSec (LNCS), Vol. 8788. Springer, 199–212.

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2019.

Beyond 2014: Formal methods for attack tree-based security modeling 1:35

[81] Sjouke Mauw and Martijn Oostdijk. 2005. Foundations of Attack Trees. In ICISC (LNCS), Vol. 3935. Springer, 186–198.
[82] National Electric Sector Cybersecurity Organization Resource (NESCOR). 2015. Analysis of Selected Electric Sector

High Risk Failure Scenarios, Version 2.0. (2015). Retrieved June 13, 2018 from http://smartgrid.epri.com/doc/NESCOR%
20Detailed%20Failure%20Scenarios%20v2.pdf

[83] Abraham Neyman and Sylvain Sorin. 2003. Stochastic Games and Applications. NATO Science Series ASIC, Vol. 570.
Kluwer Academic Publishers.

[84] Peter Niebert, Stavros Tripakis, and Sergio Yovine. 2000. Minimum-time reachability for timed automata. In IEEE
Mediteranean Control Conference. IEEE, 8.

[85] Hanne Riis Nielson, Flemming Nielson, and Roberto Vigo. 2012. A Calculus for Quality. In FACS (LNCS), Vol. 7684.
Springer, 188–204.

[86] Judea Pearl. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann.
[87] René Peeters. 2003. The maximum edge biclique problem is NP-complete. Discrete Appl. Math. 131, 3 (2003), 651–654.
[88] Ludovic Piètre-Cambacédès and Marc Bouissou. 2010. Attack and Defense Modeling with BDMP. In MMM-ACNS

(LNCS), Vol. 6258. Springer, 86–101.
[89] Sophie Pinchinat, Mathieu Acher, and Didier Vojtisek. 2014. Towards Synthesis of Attack Trees for Supporting

Computer-Aided Risk Analysis. In SEFM Workshops (LNCS), Vol. 8938. Springer, 363–375.
[90] Sophie Pinchinat, Mathieu Acher, and Didier Vojtisek. 2015. ATSyRa: An Integrated Environment for Synthesizing

Attack Trees – (Tool Paper). In GraMSec 2015 (LNCS), Vol. 9390. Springer, 97–101.
[91] Marc Pouly. 2010. NENOK – A Software Architecture for Generic Inference. Int. J. on Artif. Intel. Tools 19 (2010),

65–99.
[92] Nicolas Privault. 2013. Discrete-Time Markov Chains. In Understanding Markov Chains: Examples and Applications.

Springer, 77–94.
[93] Christian W. Probst, Jan Willemson, and Wolter Pieters. 2015. The Attack Navigator. In GraMSec 2015 (LNCS), Vol. 9390.

Springer, 1–17.
[94] Reza Pulungan and Holger Hermanns. 2009. Acyclic Minimality by Construction—Almost. In QEST. IEEE Computer

Society, 63–72.
[95] Martin L Puterman. 2014. Markov decision processes: discrete stochastic dynamic programming. John Wiley & Sons.
[96] Loukmen Regainia. 2018. Assisting in the development and testing of secure applications. Ph.D. Dissertation. University

Clermont Auvergne, France.
[97] Loukmen Regainia and Sébastien Salva. 2017. A Methodology of Security Pattern Classification and of Attack-Defense

Tree Generation. In ICISSP. SciTePress, 136–146.
[98] N. Robertson and P.D. Seymour. 1983. Graph Minors I: Excluding a Forest. J. Comb. Theory, Ser. B 35, 1 (1983), 39–61.
[99] Arpan Roy, Dong Seong Kim, and Kishor S. Trivedi. 2012. Attack countermeasure trees (ACT): towards unifying the

constructs of attack and defense trees. Security and Communication Networks 5, 8 (2012), 929–943.
[100] Enno Ruijters and Mariëlle Stoelinga. 2015. Fault tree analysis: A survey of the state-of-the-art in modeling, analysis

and tools. Computer Science Review 15 (2015), 29–62.
[101] Bruce Schneier. 1999. Attack trees. Dr. Dobb’s journal 24, 12 (1999), 21–29.
[102] Patrick Schweitzer. 2013. Attack–Defense Trees. Ph.D. Dissertation. University of Luxembourg, Luxembourg.
[103] Yann Thierry-Mieg. 2015. Symbolic Model-Checking Using ITS-Tools. In TACAS (LNCS), Vol. 9035. Springer, 231–237.
[104] Axel Thümmler, Peter Buchholz, and Miklós Telek. 2006. A Novel Approach for Phase-Type Fitting with the EM

Algorithm. IEEE Trans. Dependable Sec. Comput. 3, 3 (2006), 245–258.
[105] Roberto Vigo, Flemming Nielson, and Hanne Riis Nielson. 2014. Automated Generation of Attack Trees. In CSF. IEEE

Computer Society, 337–350.
[106] Roberto Vigo, Flemming Nielson, and Hanne Riis Nielson. 2016. Discovering, quantifying, and displaying attacks.

Logical Methods in Computer Science 12, 4 (2016).
[107] Jonathan D. Weiss. 1991. A system security engineering process. In 14th Annual NCSC/NIST National Computer

Security Conference. 572–581.

Received June 2018; revised December 2018; accepted May 2019

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2019.

http://smartgrid.epri.com/doc/NESCOR%20Detailed%20Failure%20Scenarios%20v2.pdf
http://smartgrid.epri.com/doc/NESCOR%20Detailed%20Failure%20Scenarios%20v2.pdf

	Abstract
	1 Introduction
	2 Attack(–defense) trees in a nutshell
	3 Formal interpretations of attack trees
	3.1 Series-parallel interpretation: first formal foundations of attack trees with SAND
	3.2 Linear logic interpretation: specialization of attack trees
	3.3 Path interpretation: correctness of an attack tree with respect to a system

	4 Generation approaches
	4.1 Process algebra-based generation of attack trees
	4.2 ATSyRA methodology: generation of attack trees for physical systems
	4.3 TREsPASS: generation of attack(–defense) trees for socio-technical systems
	4.4 Biclique problem for a refinement-aware creation of attack trees
	4.5 Guided design of attack trees by tracking useful positions

	5 Static analysis
	5.1 Pareto efficient strategies in attack–defense trees
	5.2 Selection of an optimal set of countermeasures using integer linear programming
	5.3 Efficient approximation of the cost of a cheapest attack
	5.4 Quantitative analysis of attack–defense trees with repeated actions

	6 Timed automata-based analysis
	6.1 Attack tree analysis with priced timed automata
	6.2 Attack–defense tree analysis with timed automata
	6.3 Attack–defense diagram's analysis with stochastic timed automata

	7 Probabilistic analysis
	7.1 Propagation of probability distribution on attack trees
	7.2 Combining Bayesian networks and attack–defense trees
	7.3 Stochastic game interpretation of attack–defense trees
	7.4 Probabilistic model checking for attack trees

	8 Where to take it from here
	References

