Formal modeling and quantitative analysis of security using attack-defense trees

Wojciech Wideł

INSA Rennes, IRISA Supervisor: Barbara Fila Thesis director: Gildas Avoine

- Need for security
- Prepare for the worst
 - by speculating about possible attacks and their likelihoods
 - by speculating about possible countermeasures and their influence on security

Practical challenges

- Complex systems
- Complex threat landscape

Security modeling with attack-defense trees

Attacker goals

A bigger example

The fundamental questions

• Which attacks are the most likely to occur?

The fundamental questions

• What are the **optimal attacks**?

- What are the optimal attacks?
- How to counter these attacks?

Problem 1: Repeated basic actions (clones)

Problem 1: Repeated basic actions (clones)

Research question 1

How to determine optimal attacks efficiently in the presence of clones?

Wojciech Wideł

Rennes, 3 December 2019

- Attacks requiring high skills can be disastrous.
- Attacks easy to mount might have low success probability.

How to determine efficiently attacks optimal w.r.t. to multiple parameters?

- Limited resources (time, money, etc.)
- **Big pool** of available countermeasures
- Dependencies between countermeasures and potential attacks
- Need to prioritize

- Limited resources (time, money, etc.)
- **Big pool** of available countermeasures
- Dependencies between countermeasures and potential attacks
- Need to prioritize

How to determine efficiently sets of optimal countermeasures?

How to determine optimal attacks efficiently in the presence of clones?

Research question 2

How to determine efficiently attacks optimal w.r.t. to multiple parameters?

Research question 3

How to determine efficiently sets of optimal countermeasures?

- Theoretical developments
 - Analysis of attacks in the presence of clones (POST'18)
 - Multi-parameter analysis of attacks (CSF'19)
 - Selection of optimal sets of countermeasures (iFM'17, paper under submission)
- Practical contributions
 - Overview of recent developments in the field (ACM Comput. Surv. 2019)
 - **Tool support** and realistic **case study** (GraMSec'19)

- Theoretical developments
 - Analysis of attacks in the presence of clones (POST'18)
 - Multi-parameter analysis of attacks (CSF'19)
 - Selection of optimal sets of countermeasures (iFM'17, paper under submission)
- Practical contributions
 - Overview of recent developments in the field (ACM Comput. Surv. 2019)
 - **Tool support** and realistic **case study** (GraMSec'19)

Analysis of attacks in the presence of clones

Multi-parameter analysis of attacks

Other contributions

Future work

Analysis of attacks in the presence of clones

Multi-parameter analysis of attacks

Other contributions

Future work

Example: minimal cost of attack in attack trees

Attack = minimal set of actions achieving the root goal

Attacks

$\{\mathtt{b},\mathtt{c}\}$

Attacks

 $\{\mathtt{b},\mathtt{c}\},\{\mathtt{a},\mathtt{c},\mathtt{d}\}$

Minimal cost via an extraction of attacks

$$\{\mathbf{b},\mathbf{c}\},\{\mathtt{a},\mathtt{c},\mathtt{d}\}$$

$$\min\{\mathbf{16} + \mathbf{10}, \mathbf{10} + \mathbf{10} + \mathbf{5}\} = \mathbf{25}$$

$$\{\mathbf{b},\mathbf{c}\},\{\mathtt{a},\mathtt{c},\mathtt{d}\}$$

$$\min\{16 + 10, 10 + 10 + 5\} = 25$$

pros: intuitively desired result
cons: slow

AND: +

OR: min

AND: +

OR: min

AND: +

OR: min AND: +

- Attacks extraction: correct, slow
- Bottom-up: fast, incorrect in the presence of clones

How to determine optimal attacks efficiently in the presence of clones?

Necessary and optional clones

Attacks:
$$\{b, c\}, \{a, c, d\}$$

c - necessary clone

b - optional clone

Neutralize necessary clones

Step 1:
$$cost'(c) := 0$$

Play with optional clones

Step 1:
$$cost'(c) := 0$$

Step 2.1:
$$cost'(b) := +\infty$$

 $res_1 := 15$

Play with optional clones

Step 1:
$$cost'(c) := 0$$

Step 2.1:
$$cost'(b) := +\infty$$

 $res_1 := 15$

Step 2.2:
$$cost'(b) := 0$$

 $res_2 := 0 + cost(b) = 16$

Step 1:
$$cost'(c) := 0$$

$$\begin{array}{l} \text{Step 2.1: } \mathtt{cost'(b)} \mathrel{\mathop:}= +\infty \\ \mathtt{res}_1 \mathrel{\mathop:}= 15 \end{array}$$

Step 3: res := min{15,16} + 10 = 25 **Input:** Attack tree T, $(\mathbb{R}^+, \min, +)$, cost: $\mathbb{B} \to \mathbb{R}^+$ **Output:** Cost(*T*, cost) 1: $C_{N} \leftarrow$ necessary clones 2: $C_{O} \leftarrow \text{optional clones}$ 3: $cost'(b) \leftarrow 0$ for $b \in C_N$ 4: for every subset $C \subseteq C_O$ do $\mathsf{cost}'(\mathsf{b}) \leftarrow +\infty$ for every $\mathsf{b} \in \mathcal{C}$ 5: $cost'(b) \leftarrow 0$ for every $b \in C_O \setminus C$ 6: $r_{\mathcal{C}} \leftarrow \text{cost}_{BU}(T, \text{cost}') + \sum_{b \in \mathcal{C}_{C} \setminus \mathcal{C}} \text{cost}(b)$ 7:

- 8: end for
- 9: return $\min_{\mathcal{C}\subseteq\mathcal{C}_O} r_{\mathcal{C}} + (\sum_{b\in\mathcal{C}_N} \text{cost}(b))$

//neutral for +

//absorbing for +, neutral for min

Examples of attributes of interest

Minimal cost

Examples of attributes of interest

Minimal cost

 $(\overline{\mathbb{R}}^+,\mathsf{min},+)$

Maximal success probability

 $([0,1],\mathsf{max},\cdot)$

Examples of attributes of interest

Minimal cost

 $(\overline{\mathbb{R}}^+,\mathsf{min},+)$

Maximal success probability

 $([0,1], \max, \cdot)$

Minimal skill level

 $(\mathbb{N} \cup \{+\infty\}, \min, \max)$

Need for special equipment

 $(\{0,1\},\min,\max)$

$(\mathbb{R}^+, \min, +)$	
Maximal s Commutative idempotent semiring	
$([0,1], \max, An algebraic structure (D, \oplus, \odot), where$	
Minimal sk \bullet \oplus is idempotent	
$(\mathbb{N} \cup \{+\infty\}$ $ullet$ and \odot are associative and commutative	
• • distributes over \oplus	
Need for s	
$(\{0,1\},\min$ • with 1 and 0	

Non-increasing attribute domain

An attribute domain (D,\oplus,\odot) s.t.

• (D,\oplus,\odot) - commutative idempotent semiring

•
$$c \oplus (c \odot d) = c$$
 for $c, d \in D$

Non-increasing attribute domain

An attribute domain (D, \oplus, \odot) s.t.

- (D,\oplus,\odot) commutative idempotent semiring
- $c \oplus (c \odot d) = c$ for $c, d \in D$ \approx doing less is better

Non-increasing attribute domain

An attribute domain (D, \oplus, \odot) s.t.

- (D,\oplus,\odot) commutative idempotent semiring
- $c \oplus (c \odot d) = c$ for $c, d \in D$ \approx doing less is better

Minimal cost, $(\overline{\mathbb{R}}^+, \min, +)$ $\min\{x, x + y\} = x$

Maximal success probability, $([0, 1], \max, \cdot)$ max $\{x, x \cdot y\} = x$ **Input:** Attack tree T, non-increasing attribute domain (D, \oplus, \odot) , $\alpha \colon \mathbb{B} \to D$ **Output:** $A(T, \alpha)$

- 1: $\mathcal{C}_{N} \leftarrow$ necessary clones
- 2: $\mathcal{C}_{O} \leftarrow \text{optional clones}$
- 3: $\alpha'(\mathtt{b}) \leftarrow \mathbf{1}$ for $\mathtt{b} \in \mathcal{C}_N$
- 4: for every subset $\mathcal{C}\subseteq\mathcal{C}_{\mathcal{O}}$ do
- 5: $\alpha'(\mathtt{b}) \leftarrow \mathbf{0}$ for every $\mathtt{b} \in \mathcal{C}$
- 6: $\alpha'(b) \leftarrow \mathbf{1}$ for every $b \in \mathcal{C}_O \setminus \mathcal{C}$
- 7: $r_{\mathcal{C}} \leftarrow \alpha_{\mathcal{B}}(\mathcal{T}, \alpha') \odot \odot_{\mathbf{b} \in \mathcal{C}_{\mathcal{O}} \setminus \mathcal{C}} \alpha(\mathbf{b})$
- 8: end for
- 9: return $\bigoplus_{\mathcal{C}\subseteq\mathcal{C}_O} r_{\mathcal{C}}\odot(\bigcirc_{\mathbf{b}\in\mathcal{C}_N}\alpha(\mathbf{b}))$

//neutral for \odot

//absorbing for \odot , neutral for \oplus

Input: Attack tree T, non-increasing attribute domain (D, \oplus, \odot) , $\alpha \colon \mathbb{B} \to D$ **Output:** $A(T, \alpha)$

- 1: $C_N \leftarrow$ necessary clones
- 2: $C_O \leftarrow \text{optional clones}$
- 3: C Theorem

The algorithm returns correct results for non-increasing attribute domains.

- 5: $\alpha'(b) \leftarrow \mathbf{0}$ for every $b \in \mathcal{C}$
- 6: $\alpha'(b) \leftarrow \mathbf{1}$ for every $b \in \mathcal{C}_O \setminus \mathcal{C}$
- 7: $r_{\mathcal{C}} \leftarrow \alpha_B(\mathcal{T}, \alpha') \odot \odot_{b \in \mathcal{C}_O \setminus \mathcal{C}} \alpha(b)$
- 8: end for
- 9: return $\bigoplus_{\mathcal{C}\subseteq\mathcal{C}_O} r_{\mathcal{C}}\odot(\bigcirc_{\mathbf{b}\in\mathcal{C}_N}\alpha(\mathbf{b}))$

Weighted Monotone Satisfiability Problem [Buldas 2012]

Given

- ϕ monotone propositional formula (only \lor and \land) over X,
- $w: X \to \mathbb{R}_{\geq 0}$ weight function,
- t threshold value,

decide whether

$$\min\{w(x_1) + \ldots + w(x_k) \colon x_1 \wedge \ldots \wedge x_k \models \phi\} \leq t.$$

Weighted Monotone Satisfiability Problem [Buldas 2012]

Given

- ϕ monotone propositional formula (only \lor and \land) over X,
- $w: X \to \mathbb{R}_{\geq 0}$ weight function,
- t threshold value,

decide whether

$$\min\{w(x_1) + \ldots + w(x_k) \colon x_1 \wedge \ldots \wedge x_k \models \phi\} \leq t.$$

\Rightarrow in the case of cost better to use mathematical programming

Wojciech Wideł

Rennes, 3 December 2019

Analysis of attacks in the presence of clones

Multi-parameter analysis of attacks

Other contributions

Future work

Pareto frontier (PF) for cost and probability

Pareto optimal attacks w.r.t. cost and probability

$$\begin{array}{l} \{\mathtt{b},\mathtt{c}\}\colon \{(16+10,0.8\cdot2^{-1})\}\\ \{\mathtt{a},\mathtt{c},\mathtt{d}\}\colon \{(10+10+5,2^{-2}\cdot2^{-1}\cdot2^{-20})\}\end{array}$$

Pareto optimal attacks w.r.t. cost and probability

$$\begin{split} & \{ b, c \} \colon \{ (16+10, 0.8 \cdot 2^{-1}) \} & \text{values: } \{ (26, 0.4), (25, 2^{-23}) \} \\ & \{ a, c, d \} \colon \{ (10+10+5, 2^{-2} \cdot 2^{-1} \cdot 2^{-20}) \} & \text{PF: } \{ (26, 0.4), (25, 2^{-23}) \} \end{split}$$

Wojciech Wideł

Rennes, 3 December 2019

Pareto attribute domain for cost and probability

- Domains for cost and probability: $(\overline{\mathbb{R}}^+, \min, +), ([0, 1], \max, \cdot)$
- $\mathbf{d} = (d_c, d_p), \ \mathbf{d}' = (d'_c, d'_p) \in \mathbb{N} \times [0, 1]$
- $D, D' \subseteq \mathbb{N} \times [0, 1]$

$$\begin{split} \mathbf{d} \odot \mathbf{d}' &:= (d_c + d'_c, d_p \cdot d'_p) \\ D \odot D' &:= \{ \mathbf{d} \odot \mathbf{d}' : \mathbf{d} \in D, \mathbf{d}' \in D' \} \\ D \widehat{\odot} D' &:= \mathsf{PF}(D \odot D') \qquad // \text{ Pareto frontier} \\ D \widehat{\oplus} D' &:= \mathsf{PF}(D \cup D') \qquad // \text{ Pareto frontier} \end{split}$$

• $\left(P(\overline{\mathbb{R}}^+ imes [0,1]), \widehat{\oplus}, \widehat{\odot} \right)$

// P(X) = Pareto optimal subsets of X

Pareto attribute domain: general construction

- Attribute domains: $(D_1, \oplus_1, \odot_1), \ldots, (D_m, \oplus_m, \odot_m)$
- Operations for $\mathbf{d}, \mathbf{d}' \in D_1 \otimes \ldots \otimes D_m$ and $D, D' \subseteq D_1 \otimes \ldots \otimes D_m$:

$$\mathbf{d} \odot \mathbf{d}' := (d_1 \oplus_1 d'_1, \dots, d_m \oplus_m d'_m)$$
$$D \odot D' := \{\mathbf{d} \odot \mathbf{d}' : \mathbf{d} \in D, \mathbf{d}' \in D'\}$$
$$D \widehat{\odot} D' := \mathsf{PF}(D \odot D')$$
$$D \widehat{\oplus} D' := \mathsf{PF}(D \cup D')$$

Pareto attribute domain: general construction

- Attribute domains: $(D_1, \oplus_1, \odot_1), \ldots, (D_m, \oplus_m, \odot_m)$
- Operations for $\mathbf{d}, \mathbf{d}' \in D_1 \otimes \ldots \otimes D_m$ and $D, D' \subseteq D_1 \otimes \ldots \otimes D_m$:

$$\mathbf{d} \odot \mathbf{d}' := (d_1 \oplus_1 d'_1, \dots, d_m \oplus_m d'_m)$$
$$D \odot D' := \{\mathbf{d} \odot \mathbf{d}' : \mathbf{d} \in D, \mathbf{d}' \in D'\}$$
$$D \widehat{\odot} D' := \mathsf{PF}(D \odot D')$$
$$D \widehat{\oplus} D' := \mathsf{PF}(D \cup D')$$

Pareto attribute domain

Let (D_i, \oplus_i, \odot_i) , for $i \in \{1, \ldots, m\}$, be commutative idempotent semirings. The algebraic structure $(P(D_1 \otimes \ldots \otimes D_m), \widehat{\oplus}, \widehat{\odot})$ is the Pareto attribute domain induced by (D_i, \oplus_i, \odot_i) .

Theorem 1

Pareto attribute domains are commutative idempotent semirings.

Theorem 1

Pareto attribute domains are commutative idempotent semirings.

Theorem 2

Pareto attribute domain induced by non-increasing attribute domains is itself non-increasing.

 \Rightarrow the algorithm presented earlier can be applied

- General framework for multi-parameter analysis of security
 - suitable for attributes modeled with semirings
 - suitable for any number of such attributes
- Developed for attack-defense trees
- Applicable for trees containing clones

Analysis of attacks in the presence of clones

Multi-parameter analysis of attacks

Other contributions

Future work

Overview of our framework for selection of optimal countermeasures

The general integer linear programming problem

$$\begin{array}{l} \textbf{Optimization goal: maximize } F(x_1, \dots, x_p, f_1, \dots, f_m, z_1, \dots, z_n) \\ \textbf{Subject to: } \sum_{k=1}^p \operatorname{cost}(\mathbf{b}_k) x_k \leq \mathcal{B} \\ f_j \geq \frac{\sum_{k=1}^p A_{kj}(1-x_k)}{p}, \ 1 \leq j \leq m \\ f_j \leq \sum_{k=1}^p A_{kj}(1-x_k), \ 1 \leq j \leq m \\ z_i \geq 1 + \sum_{j=1}^m B_{ij}(f_j-1), \ 1 \leq i \leq n \\ z_i \leq \frac{\sum_{j=1}^m B_{ij}f_j}{\sum_{j=1}^m B_{ij}}, \ 1 \leq i \leq n \\ x_k \in \{0,1\}, f_j \in \{0,1\}, z_i \in \{0,1\} \end{array}$$

A realistic case study of electricity theft scenario and tool demonstration:
 B. Fila and W. Wideł. Attack-defense trees for abusing optical power meters:
 A case study and the DSEAD tool experience report. GraMSec'19.

Practical validation

 A detailed description and comparison of approx. 30 selected recent papers on attack-defense trees:
 W. Wideł, M. Audinot, B. Fila and S. Pinchinat. *Beyond 2014: Formal methods for attack tree-based security modeling*. ACM Computing Surveys, 2019. Analysis of attacks in the presence of clones

Multi-parameter analysis of attacks

Other contributions

Future work

- Focus on automatization of models creation
- Take additional dependencies into account
- Work on attribute domains other than the non-increasing ones
- Improve efficiency of the methods for countermeasures selection

- B. Kordy and W. Wideł. *Exploiting attack-defense trees to find an optimal set of countermeasures.* Under submission.
- B. Fila and W. Wideł. *Attack-defense trees for abusing optical power meters: A case study and the OSEAD tool experience report.* In proc. of GraMSec 2019.
- B. Fila and W. Wideł. *Efficient Attack–Defense Tree Analysis using Pareto Attribute Domains*. In proc. of CSF 2019.
- W. Wideł, M. Audinot, B. Fila and S. Pinchinat. *Beyond 2014: Formal methods for attack tree-based security modeling.* ACM Computing Surveys, 2019.
- B. Kordy and W. Wideł. *On quantitative analysis of attack-defense trees with repeated labels.* In proc. of POST 2018.
- B. Kordy and W. Wideł. How well can I secure my system? In proc. of iFM 2017.

Wojciech Wideł

Rennes, 3 December 2019

Our place in the research area

- Analysis with clones
 - clones are not liked: [Aslanyan 2015], [Muller 2016]
 - clones tend to be overlooked
 - we solve WMSAT of [Buldas 2012], [Buldas 2017], determining the cause for its difficulty
- Pareto-based analysis
 - more general than [Aslanyan 2015], works with clones
 - faster than [Kumar 2015], takes probability into account
- Selection of countermeasures
 - more complex settings than in [Muller 2016], [Roy 2017], [Sendi 2018]
 - more efficient than [Aslanyan 2016]