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1 Introduction

The main aim of the thesis is to give new sufficient conditions for existence of cycles
in 2-connected simple graphs. The conditions under consideration involve imposing some
requirements on degrees of some of the graphs vertices in order to entail its hamiltonicity
or the existence of cycles of all possible lengths. The results obtained extend some clas-
sical degree-type conditions for hamiltonicity and pancyclicity, as well as some conditions
expressed in terms of forbidden subgraphs.

All of the notions and symbols not defined explicitly in the thesis are used according
to [8]. For a graph G we denote its set of vertices and set of edges by V (G) and E(G),
respectively. The neighbourhood of a vertex v ∈ V (G) is denoted by NG(v) and the number
dG(v) of its elements is called the degree of v. The minimum degree of the vertices of G
is denoted δ(G). If there are cycles of all possible lengths in G (i.e., cycles of lengths 3, 4,
..., |V (G)|), then G is said to be pancyclic. The distance dG(u, v) between two vertices u
and v of a connected graph G is the length of the shortest path connecting them (i.e., the
number of the edges of such a path). By Pn we denote a path of order n. Graph obtained
from G by removing one of its edges is denoted by G− e.

A cycle passing through all of the graph’s vertices is called its hamiltonian cycle
(or Hamilton cycle). This specific cycle owes its name to sir William Rowan Hamilton
who, in a letter to a friend from 1856, described a game played on a regular dodecahedron.
The aim of the game was to create a path beginning and ending in a given vertex that passes
through all of the other vertices, while visiting each of them exactly once (in 1859 Hamilton
was able to sell the game to a London game dealer for 25 pounds; for a more complete
description of the game and of its mathematical model see [1], p. 262). Since the problem
of determining whether or not there is a hamiltonian cycle in a given graph is NP-complete,
the knowledge of conditions ensuring hamiltonicity, satisfiability of which can be easily ver-
ified is desirable. Some of the most recent results in this field can be found in surveys [28]
and [38]. One of the first results connecting the graph’s vertices’ degrees with the existence
of a Hamilton cycle is the following theorem by Dirac from 1952.

Theorem 1.1 (Dirac [15]). Let G be a graph of order n ≥ 3. If the minimal degree of G
satisfies δ(G) ≥ n/2, then G is hamiltonian.

Eight years later Ore showed that the Dirac’s condition can be weakened.

Theorem 1.2 (Ore [43]). Let G be a graph of order n. If for every pair of its non-adjacent
vertices the sum of their degrees is not less than n, then G is hamiltonian.

In 1984 Fan gave an even more general result for 2-connected graphs. Note that the as-
sumption of a graph being 2-connected is not at all limiting, since 2-connectedness
is a necessary condition for hamiltonicity.

Theorem 1.3 (Fan [17]). Let G be a 2-connected graph of order n ≥ 3. If

dG(u, v) = 2⇒ max{dG(u), dG(v)} ≥ n/2
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Fig. 2.1: The Fan’s graph F4r.

for every pair of vertices u and v in G, then G is hamiltonian.

Bondy noticed that from the existing sufficient conditions for hamiltonicity one can de-
duce even more information regarding graph’s cycle structure. In [7] he posed the so-called
Bondy’s meta-conjecture which states that almost every non-trivial sufficient condition for
hamiltonicity ensures in fact pancyclicity, possibly besides a finite number of exceptional
graphs. The following results, first of which extends Theorem 1.2 and the other one extend-
ing Theorem 1.3, support this meta-conjecture (graph F4r appearing in the following consists
of a clique on 2r vertices that is connected via a perfect matching with r disjoint copies
of a path P2; it is presented on Figure 2.1).

Theorem 1.4 (Bondy [6]). Let G be a graph of order n ≥ 3. If for every pair of its non-
adjacent vertices the sum of their degrees is not less than n, then G is pancyclic unless n is
even and G = Kn/2, n/2.

Theorem 1.5 (Benhocine and Wojda [4]). Let G be a 2-connected graph of order n ≥ 3. If

dG(u, v) = 2⇒ max{dG(u), dG(v)} ≥ n/2

for every pair of vertices u and v in G, then G is pancyclic unless n = 4r, r ≥ 1, and G is
F4r, or else n ≥ 6 is even and G = Kn/2, n/2 or G = Kn/2, n/2 − e.

It is easy to see that a slight strengthening of the assumptions of the above theorems
results in sufficient conditions for pancyclicity that are free of exceptions.

Corollary 1.1. Let G be a graph of order n ≥ 3. If for every pair of its non-adjacent vertices
the sum of their degrees is not less than n+ 1, then G is pancyclic.

Corollary 1.2. Let G be a 2-connected graph of order n ≥ 3. If

dG(u, v) = 2⇒ max{dG(u), dG(v)} ≥ (n+ 1)/2

for every pair of vertices u and v in G, then G is pancyclic.

The above corollaries and Theorem 1.5 constitute the first of the basic motivations for
our research. Theorems due to the author of the thesis are indicated with initials WW and
presented with full proofs.

5



u
u u
u u

�
�
�A

A
A

B

u
u u
�
�
�A

A
A

u u�
�
�A
A
A

H

u
u

u u
u u

�
�
�A

A
A

N

u
u u
u
u

u
u

�
�
�A

A
A

D

u
u u
u u

u

�
�
�A

A
A

W

u���
u

uA
A
A

uv1

uvi−1

uvi

pppp

Zi

Fig. 2.2: Graphs B (bull), H (hourglass), N (net), D (deer), W (wounded) and Zi.

1.1 Forbidden subgraphs

The second of our motivations were the results connecting the properties of hamiltonicity
and pancyclicity of 2-connected graphs with their subgraphs. A subgraph of G induced
by a set of vertices A ⊂ V (G) is a subgraph of G whose set of vertices is A and whose set
of edges consists of all the edges of G whose both endvertices belong to A. If there are no
induced copies of a graph S in G, then G is said to be S-free. If one demands G being S-free
(or being S-free for a family of graphs S), then S is said to be forbidden in G (respectively,
the family S is forbidden in G). The complete bipartite graph K1, 3 is called a claw. All of
the special graphs that appear in the results presented further in the thesis are represented
on Figure 2.2.

It is easy to see, that every 2-connected P3-free graph is a complete graph and as such it
is both hamiltonian and pancyclic. A fact that is a bit harder to prove is that the path P3 is
the only graph forbidding of which in 2-connected graph ensures its hamiltonicity, and the
only one forbidding of which implies pancyclicity (for the proof see [20]). The next natural
step in examining connections between induced subgraphs and the existence of cycles in
graphs was to consider pairs of forbidden subgraphs, with P3 excluded. The first result of
this type was published in 1974 and is due to Goodman and Hedetniemi.

Theorem 1.6 (Goodman, Hedetniemi [27]). Every 2-connected {K1, 3, Z1}-free graph is
hamiltonian.

Note that every C3-free graph is also Z1-free. Hence, it follows from the above theorem
that every 2-connected {K1, 3, C3}-free graph is hamiltonian. In fact, one can easily check
that the only graphs satisfying this condition are cycles of order at least four. Theorem 1.6
was improved a few years later in the following ways.

Theorem 1.7 (Duffus, Gould, Jacobson [16]). Every 2-connected {K1, 3, N}-free graph is
hamiltonian.

Theorem 1.8 (Gould, Jacobson [29]). Every 2-connected {K1, 3, Z2}-free graph is either
pancyclic or a cycle.
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The next pair of forbidden subgraphs ensuring hamiltonicity of 2-connected graphs was
presented in 1990 by Broersma and Veldman.

Theorem 1.9 (Broersma, Veldman [9]). Every 2-connected {K1, 3, P6}-free graph is hamil-
tonian.

In his Ph. D. thesis from 1991, Bedrossian gathered the above results and presented also
the last pair of forbidden subgraphs for hamiltonicity of 2-connected graphs. The fact that
forbidding any other pair of subgraphs indeed does not imply hamiltonicity was showed six
years later by Faudree and Gould. These results can be presented in the following form.

Theorem 1.10 (Bedrossian [2]; Faudree, Gould [20]). Let R and S be connected graphs with
R 6= P3, S 6= P3 and let G be a 2-connected graph. Then G being {R, S}-free implies G is
hamiltonian if and only if (up to symmetry) R = K1, 3 and S = C3, P4, P5, P6, Z1, Z2, B, N

or W .

It was also showed by Bedrossian in [2] that forbidding the pair {K1, 3, P5} in a 2-
connected graph G implies, similarly to Theorem 1.8, that G is either pancyclic or else a
short cycle. Faudree and Gould proved that these two pairs of subgraphs are the only ones
forbidding of which in 2-connected graphs (other than cycles) implies pancyclicity. Since the
path P4 is an induced subgraph of P5 and Z1 is an induced subgraph of Z2, we state this
fact as follows.

Theorem 1.11 (Bedrossian [2]; Faudree, Gould [20]). Let R and S be connected graphs with
R 6= P3, S 6= P3 and let G be a 2-connected graph which is not a cycle. Then G being {R, S}-
free implies G is pancyclic if and only if (up to symmetry) R = K1, 3 and S = P4, P5, Z1 or
Z2.

Theorems 1.10 and 1.11 provide a complete characterization of forbidden pairs of sub-
graphs for hamiltonicity and pancyclicity of 2-connected graphs. List of all forbidden triples
ensuring hamiltonicity which are of the form {K1, 3, R, S} can be found in [10], and of all
the triples that do not contain a claw in [21]. Two of these triples are of interest for us (for
graphs H and D see Figure 2.2).

Theorem 1.12 (Faudree et al. [19]; Brousek [10]). Every 2-connected, {K1, 3, P7, H}-free
graph is hamiltonian.

Theorem 1.13 (Broersma, Veldman [9]; Brousek [10]). Every 2-connected, {K1, 3, P7, D}-
free graph is hamiltonian.

These two particular triples were examined a few years before the publication of Brousek’s
result by Faudree, Ryjáček and Schiermeyer. They showed in [19] that in graphs of order big
enough forbidding of these triples ensures in fact pancyclicity, perhaps with cycles of exactly
one length missing.

Theorem 1.14 (Faudree et al., Theorem 15 in [19]). Every 2-connected, {K1, 3, P7, H}-free
graph on n ≥ 9 vertices is pancyclic or missing only one cycle.
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Theorem 1.15 (Faudree et al., Corollary F in [19]). Every 2-connected, {K1, 3, P7, D}-free
graph on n ≥ 14 vertices is pancyclic

In the results presented so far the sufficient conditions for hamiltonicity and pancyclicity,
both in terms of degrees and in terms of forbidden subgraphs, were quite strong. In order to
weaken the conditions of the first type, one can try to limit the number of vertices on which
a high degree requirement is imposed. Weakening of the forbidden subgraph-type conditions
can be achieved by allowing the forbidden subgraphs to be present in a graph, but with some
degree conditions imposed on their vertices. Theorems 1.2 and 1.3 are natural inspiration
for a suitable choice of such conditions.

We finish this subsection with a short digression. The thesis is exclusively devoted to
2-connected graphs, because these graphs were the object of our research. Interested reader
can find in [30] a complete characterization of forbidden pairs of subgraphs for pancyclicity
of 3-connected graphs. Some partial results concerning forbidden subgraph-type conditions
for hamiltonicity in 3-connected graphs can be found in [39], [33] [25] or [53]. For similar
results regarding 4-connected graphs see [44], [26] (for hamiltonicity) or [26], [24] and [22] (for
sufficient conditions for pancyclicity). Since the aim of this thesis is by no means to present
the state of the art in the field of forbidden subgraph-type conditions for the existence of
cycles in graphs, we do not present the main results of the above mentioned articles.

1.2 Fan-type heavy subgraphs

In his paper from 1984 Fan actually proved a result more general than Theorem 1.3.

Theorem 1.16 (Fan [17]). Let G be a 2-connected graph with n vertices and let 3 ≤ k ≤ n.
If

dG(u, v) = 2⇒ max{dG(u), dG(v)} ≥ k/2

for every pair of vertices u and v in G, then there is a cycle of length at least k in G.

Imposing the above degree condition on subgraphs appearing in Theorems 1.10 and
1.11 is one of the possible ways of generalizing these theorems. This idea was explored by
many researchers, using various terminology and notations. Before we state their results, we
introduce a notion that encapsulates these different notations.

Definition 1. Let S be a family of graphs and let k be a positive integer. We say that
a graph G satisfies Fan’s condition with respect to S with constant k, if for every induced
subgraph S of G isomorphic to any of the graphs from S the following holds:

∀u, v ∈ V (S) : dS(u, v) = 2 ⇒ max{dG(u), dG(v)} ≥ k/2.

By F(S, k) we denote the family of graphs satisfying the Fan’s condition with respect to
S with constant k. If S consists of one element, say S, we write F(S, k) instead of F({S}, k).
Note that given a family of graphs S and a constant k, every S-free graph satisfies Fan’s
condition with respect to S with constant k. It is also clear that if G ∈ F(P3, k), then
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G ∈ F(S, k) for any connected graph S. The authors of [3] were first to impose the Fan’s
condition on one of the pairs of subgraphs that appear in Theorems 1.10 and 1.11. They
obtained the following results.

Theorem 1.17 (Bedrossian, Chen and Schelp [3]). Let G be a 2-connected graph with n

vertices. If 3 ≤ k ≤ n and G ∈ F({K1, 3, Z1}, k), then there is a cycle of length at least k
in G.

Theorem 1.18 (Bedrossian, Chen and Schelp [3]). Let G be a 2-connected graph of order
n ≥ 3 which is not a cycle. If G ∈ F({K1, 3, Z1}, n), then G is pancyclic unless n = 4r,
r ≥ 1, and G is F4r, or else n ≥ 6 is even and G = Kn/2, n/2 or G = Kn/2, n/2 − e.

A natural next step towards extending Theorems 1.10 and 1.11 (as well as Theorems
1.5 and 1.16) in the direction indicated by Theorems 1.17 and 1.18 was to impose Fan’s
condition on the pair {K1, 3, P4}.

Theorem 1.19 (WW [51]). Let G be a 2-connected graph of order n. If 3 ≤ k ≤ n and
G ∈ F({K1, 3, P4}, k), then there is a cycle of length at least k in G.

Theorem 1.20 (WW [51]). Let G be a 2-connected graph of order n ≥ 3. If G ∈ F({K1, 3, P4}, n),
then G is pancyclic unless n = 4r, r ≥ 1, and G is F4r, or else n ≥ 6 is even and G = Kn/2, n/2

or G = Kn/2, n/2 − e.

In Chapter 3 the proof of Theorem 1.19 is presented. The proof of Theorem 1.20 can be
found in Chapter 4. Clearly, Theorem 1.16 is a corollary from Theorem 1.19 and Theorem
1.5 follows from Theorem 1.20.

Most of the papers devoted to the problem of improving Bedrossian’s results involve the
Fan’s condition with a constant k being equal to the order of the graph. Note that the pair
{K1, 3, C3} which appears in Theorem 1.10 is missing in the following result. This is due to
the fact that for every integer m ≥ 2 every graph satisfies Fan’s condition with respect to
the complete graph Km with any real number k.

Theorem 1.21. Let R and S be connected graphs with R 6= P3, S 6= P3 and let G be a
2-connected graph of order n. Then G ∈ F({R, S}, n) implies G is hamiltonian if and only
if (up to symmetry) R = K1, 3 and S is one of the following:
- P4, P5, P6 (Chen, Wei and X. Zhang [14]),
- Z1 (Bedrossian, Chen and Schelp [3]),
- B (G. Li, Wei and Gao [37]),
- N (Chen, Wei and X. Zhang [13]),
- Z2, W (Ning and S. Zhang [42]).

In light of Theorems 1.5, 1.18 and 1.19 it is clear that in general case imposing the Fan’s
condition on the pairs of subgraphs from Theorem 1.11 with a constant equal to the order
of the graph is not enough for ensuring pancyclicity. The existence of cycles of all possible
lengths is entailed by imposing a slightly stronger condition.
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Theorem 1.22. Let R and S be connected graphs with R 6= P3, S 6= P3 and let G be a
2-connected graph of order n which is not a cycle. Then G ∈ F({R, S}, n+ 1) implies G is
pancyclic if and only if (up to symmetry) R = K1, 3 and S is one of the following:
- Z1 (Bedrossian, Chen and Schelp [3]),
- Z2, P4 (Ning [41]),
- P5 (WW [47]).

The proof of the last part of the above theorem, that is the fact that every 2-connected
graph belonging to F({K1, 3, P5}, n + 1) other than a cycle is pancyclic is not included in
the thesis itself, since it has been already published and the general idea of the proof is
also exploited in Chapter 5. However, for the convenience of interested readers we attach a
copy of the paper containing the proof. Note also, that from the exceptional non-pancyclic
graphs mentioned in Theorem 1.20 only the cycle K2, 2 satisfies Fan’s condition with respect
to {K1, 3, P4} with constant n + 1. Hence, the part of Theorem 1.22 regarding the pair
{K1, 3, P4} can be deduced from Theorem 1.20.

The results presented so far suggest posing the following conjectures.

Conjecture 1.1. Let R and S be connected graphs with R 6= P3, S 6= P3 and let G be
a 2-connected graph with n vertices. If 3 ≤ k ≤ n, then G ∈ F({R, S}, k) implies that
there is a cycle of length at least k in G if and only if (up to symmetry) R = K1, 3 and
S = C3, P4, P5, P6, Z1, Z2, B, N or W .

Conjecture 1.2. Let R and S be connected graphs with R 6= P3, S 6= P3 and let G be
a 2-connected graph of order n other than Cn, F4(n/4), Kn/2, n/2 and Kn/2, n/2 − e. Then
G ∈ F({R, S}, n) implies G is pancyclic if and only if (up to symmetry) R = K1, 3 and
S = P4, P5, Z1 or Z2.

Imposing an appropriate Fan’s condition on some triples of subgraphs also yielded new
sufficient conditions for hamiltonicity of 2-connected graphs. The following results extend
Theorems 1.12 and 1.13.

Theorem 1.23 (Ning [40]). Let G be a 2-connected graph of order n ≥ 3.
If G ∈ F({K1, 3, P7, H}, n), then G is hamiltonian.

Theorem 1.24 (Ning [40]). Let G be a 2-connected graph of order n ≥ 3.
If G ∈ F({K1, 3, P7, D}, n), then G is hamiltonian.

Motivated by Theorems 1.23 and 1.24 and by similar results for pairs of forbidden and
Fan-type heavy subgraphs, we extended Theorems 1.14 and 1.15 in the following way.

Theorem 1.25 (WW [49]). Let G be a 2-connected graph of order n ≥ 3.
If G ∈ F({K1, 3, P7, H}, n + 1) and there is a vertex of degree at least (n + 1)/2 in G,
then G is pancyclic.

Theorem 1.26 (WW [52]). Let G be a 2-connected graph of order n ≥ 14.
If G ∈ F({K1, 3, P7, D}, n+ 1), then G is pancyclic.
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As the proofs of the both above theorems share the same general framework, instead of
presenting them separately, in Chapter 5 we give a proof of the following theorem.

Theorem 1.27 (WW). Let G be a 2-connected graph with n vertices. If G ∈ F({K1, 3, P7}, n+
1) and

1. n ≥ 14 and G ∈ F(D, n+ 1), or

2. G ∈ F(H, n+ 1) and there is a vertex of degree at least (n+ 1)/2 in G,

then G is pancyclic.

Before we present another type of heavy subgraphs, the one inspired by Theorem 1.2, we
note that the Fan-type degree conditions can be relaxed further. Instead of demanding from
some of the vertices of a graph of order n to have degree not less than n/2 or (n+ 1)/2, one
can require that their implicit degrees (introduced in [54]) satisfy these inequalities. Since
the implicit degree of a vertex is not less than its degree, this is a weaker requirement. Using
these idea the authors of [12], [11] and [50] improved Theorems 1.23 and 1.24. Since our
results presented in [50] are sufficient conditions for hamiltonicity, and the main focus of the
thesis are sufficient conditions for pancyclicity, they are not included in the thesis.

1.3 Ore-type heavy subgraphs

Another possible approach to weakening of the assumptions of Theorems 1.10 and 1.11 is
to impose on the subgraphs they involve an Ore-type degree condition. A specific type of
Ore-type heavy subgraphs was first introduced in [46]. The authors of [36] extended this
idea in the following way.

Definition 2. Graph G is said to be S-o-heavy (S-o1-heavy) if in every induced subgraph
of G isomorphic to S there are two non-adjacent vertices with the sum of their degrees in G
at least |V (G)| (|V (G)|+ 1).

Clearly, every S-free graph is trivially S-o-heavy. Hence the following theorem extends
Bedrossian’s result.

Theorem 1.28 (B. Li, Ryjáček, Wang, S. Zhang [36]). Let R and S be connected graphs with
R 6= P3, S 6= P3 and let G be a 2-connected graph. Then G being {R, S}-o-heavy implies G
is hamiltonian if and only if (up to symmetry) R = K1, 3 and S = C3, P4, P5, Z1, Z2, B, N

or W .

Note that the only pair of subgraphs that appears in Theorem 1.10 and does not appear
here is {K1, 3, P6}. The authors of the above Theorem present in [36] an example of a non-
hamiltonian {K1, 3, P6}-o-heavy (and even claw-free, P6-o-heavy) graph. It is denoted as G1

on Figure 2.3. For V1, V2 and V3 being a balanced partition of its clique K3p (with p ≥ 5)
each of the vertices xi, for i ∈ {1, 2, 3}, is joined via an edge with all of the vertices from
the sets Vj for j 6= i.
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Similarly to the case of Fan-type heavy subgraphs, imposing a slightly stronger version of
Ore-type heaviness on the pairs of forbidden subgraphs from Theorem 1.11 yields a sufficient
condition for pancyclicity.

Theorem 1.29 (B. Li, Ning, Broersma, S. Zhang [35]). Let G be a 2-connected graph
which is not a cycle and let R and S be connected graphs with R 6= P3, S 6= P3. Then G

being {R, S}-o1-heavy implies G is pancyclic if and only if (up to symmetry) R = K1, 3 and
S = P4, P5, Z1 or Z2.

It is worth noticing that if a graph S contains an induced path with six or more vertices,
then every graph of order n belonging to the family F(S, n) is S-o-heavy. If S is a P6-free
graph, then the connections between these types of heaviness do not follow any general rule.
Consider for example the graph F4r. For S ∈ {P4, P5, Z1, Z2}, F4r belongs to the family
F(S, n) but is not S-o-heavy. On the other hand, the graph G2 depicted in Figure 2.3 is
both P4- and P5-o1-heavy, but it is a member of neither F(P4, n) nor F(P5, n).

1.4 Clique-heavy subgraphs

Recently ([34]) Li and Ning introduced another type of heavy graphs. Their motivation was
the following theorem by Hu.

Theorem 1.30 (Hu [32]). Let G be a 2-connected graph of order n ≥ 3. If G ∈ F(K1, 3, n)
and every induced P4 in an induced N of G contains a vertex of degree at least n/2, then G
is hamiltonian.

Definition 3. Induced subgraph S of a simple graph G is c-heavy in G, if for every maximal
clique C of S every non-trivial component of S −C contains a vertex of degree at least n/2
in G. Graph G is said to be S-c-heavy if every induced subgraph of G isomorphic to S is
c-heavy in G.

12



This notion allows to present the result by Hu in the following, simpler way.

Theorem 1.30 (Hu [32]). Let G be a 2-connected graph of order n ≥ 3. If G ∈ F(K1, 3, n)
and G is N-c-heavy, then G is hamiltonian.

Note that, in general case, properties of being c-heavy and o-heavy are independent, in
the sense that none of them implies another. Consider again the Fan’s graph F4r represented
on Fig. 2.1. One can check that this graph is N -c-heavy but not N -o-heavy. On the other
hand, graph G2 from Fig. 2.3 is both P5-c-heavy and P5-o-heavy but it does not belong to
the family F(P5, n).

Furthermore, there is no point in examining claw-c-heavy or P3-c-heavy graphs, as the
notion is in this case meaningless (every component of the claw or P3 lacking maximal clique
is trivial). Keeping that in mind the authors of [34] extended Theorem 1.10 in the following
way.

Theorem 1.31 (B. Li, Ning [34]). Let S be a connected graph with S 6= P3 and let G be a
2-connected, claw-o-heavy graph. Then G being S-c-heavy implies G is hamiltonian if and
only if S = P4, P5, Z1, Z2, B, N or W .

Motivated by Theorems 1.28 and 1.29 we naturally propose the notion of c1-heaviness.

Definition 4. Induced subgraph S of G is c1-heavy in G, if for every maximal clique C of
S every non-trivial component of S−C contains a vertex of order at least (n+ 1)/2. Graph
G is called S-c1-heavy if every induced subgraph of G isomorphic to S is c1-heavy in G.

Similarly to Theorems 1.22 and 1.29, we extended Bedrossian’s Theorem 1.11 in the
following way.

Theorem 1.32 (WW [48]). Let G be a 2-connected graph which is not a cycle and let S be a
connected graph other than the path P3. Then G being claw-o1-heavy and S-c1-heavy implies
G is pancyclic if and only if S = P4, P5, Z1 or Z2.

In Chapter 2 we introduce notation used further in the thesis and present some pre-
liminary results as well as some auxiliary lemmas. Proofs of Theorems 1.19 and 1.20 are
presented in Chapters 3 and 4, respectively. Chapter 5 is devoted to the proof of Theorem
1.27 and the proof of Theorem 1.32 can be found in Chapter 6.

13



2 Preliminaries

For a vertex v ∈ V (G), we denote by NG(v) the neighbourhood of v, i.e., the set of vertices
adjacent to v. For A ⊆ V (G), we denote by G[A] the subgraph of G induced by the vertex
set A. The neighbourhood of v in G[A], namely NG(v) ∩ A, is denoted by NA(v) and the
closed neighbourhood of v in G[A], namely NA(v) ∪ {v}, is denoted by NA[v].

For a cycle C = v1v2...vpv1 we distinguish one of the two possible orientations of C.
We write viC

+vj for the path following the orientation of C, i.e., the path vivi+1...vj−1vj,
and viC

−vj denotes the path from vi to vj opposite to the direction of C, that is the path
vivi−1...vj+1vj. By dC(vi, vj) we denote the length of the shorter of the paths viC

+vj and
viC

−vj. Similarly, for a path P = v1...vm and two vertices vi, vj ∈ V (P ) with i < j, we write
viP

+vj for the path vivi+1...vj−1vj and vjP
−vi for the path vjvj−1...vi+1vi. For two positive

integers k and m satisfying k ≤ m, we say that G contains [k, m]-cycles if there are cycles
Ck, Ck+1, ..., Cm in G.

Let G be a graph of order n. Vertex v ∈ V (G) is called heavy if dG(v) ≥ n/2 and
super-heavy if dG(v) ≥ (n+ 1)/2.

Let A, B ⊂ V (G) be subsets of vertices of G. By e(A, B) = |{e = uv ∈ E(G) : u ∈
A, v ∈ B}| we denote the total number of edges between A and B. If both A and B con-
sist of one element, say A = {vA} and B = {vB}, we write e(vA, vB) instead of e({vA}, {vB}).

The following lemma, which was listed as an exercise in [8] and proved in [4], proved to
be a useful tool in working with heavy subgraphs of various types.

Lemma 2.1 (Benhocine and Wojda [4]). If a graph G of order n ≥ 4 has a cycle C of length
n− 1, such that the vertex not in V (C) has degree at least n/2, then G is pancyclic.

This result can be extended as follows.

Lemma 2.2 (WW [52]). Let G be a graph of order n ≥ 4 and let C be a cycle of length n−i in
G, for some i ∈ {1, ..., n−3}. If there is a vertex v ∈ V (G)\V (C) with dG(v) ≥ (n+i−1)/2,
then there are [3, n− i+ 1]-cycles in G.

Proof. Let C = v0...vn−i−1v1 and let v be a vertex of degree at least (n+ i− 1)/2 such that
v /∈ V (C). Let G′ = G[V (C)]. Suppose that the statement is not true, i.e., that there is no
cycle Cp in G for some p ∈ {3, ..., n− i+ 1}. Then

e(v, vj) + e(v, vj+p−2) ≤ 1

for j = 0, ..., n− i− 1, with addition of indices performed modulo n− i. This implies that

dG′(v) = 1/2 ·
n−i−1∑

j=0
[e(v, vj) + e(v, vj+p−2)] ≤ (n− i)/2.

On the other hand, since there are i − 1 possible neighbours of v outside the cycle C, we
have

dG′(v) ≥ (n+ i− 1)/2− i+ 1 = (n− i+ 1)/2,

a contradiction.
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An immediate consequence of the above lemma is the following.

Corollary 2.1. Let G be a hamiltonian graph of order n and let v ∈ V (G) be a super-heavy
vertex. If there is a cycle C of length n− 2 in G such that v /∈ V (C), then G is pancyclic.

Proof. Lemma 2.2 implies that there are [3, n− 1]-cycles in G. Since G is hamiltonian, it is
pancyclic.

The next four lemmas provide a description of the cycle structure of hamiltonian graphs
with two vertices that lie close (i.e., with distance one or two along the cycle) to each other
on some hamiltonian cycle and have large degree sum.

Lemma 2.3 (Bondy [6]). Let G be a graph of order n with a hamiltonian cycle C. If there
are two vertices x, y ∈ V (G) such that dC(x, y) = 1 and dG(x) + dG(y) ≥ n + 1, then G is
pancyclic.

Lemma 2.4 (Schmeichel and Hakimi [45]). Let G be a graph of order n with a hamiltonian
cycle C = v1v2...vnv1. If dG(v1) + dG(vn) ≥ n, then G is pancyclic unless G is bipartite or
else G is missing only the (n− 1)-cycle.

Furthermore, when G is missing only the (n− 1)-cycle and dG(v1) = dG(v2) = n/2, then
the adjacency structure near v1 and v2 is the following: the path vn−2vn−1vnv1v2v3 is an
induced one, and vnvn−3, vnvn−4, v1v4, v1v5 are edges in G.

Lemma 2.5 (Ferrara, Jacobson and Harris [23]). Let G be a graph of order n with a
hamiltonian cycle C. If there are two vertices x, y ∈ V (G) such that dC(x, y) = 2 and
dG(x) + dG(y) ≥ n+ 1, then G is pancyclic.

Lemma 2.6 (Han [31]). Let G be a graph of order n with a hamiltonian cycle C. If there
are two non-adjacent vertices x, y ∈ V (G) such that dC(x, y) = 2 and dG(x) + dG(y) ≥ n,
then G is pancyclic, unless G is bipartite or else G is missing only the (n− 1)-cycle, or the
cycle of length three.

The next lemma will be used to derive Lemma 2.8 - a cycle structure theorem similar to
Lemmas 2.3-2.6.

Lemma 2.7 (Faudree, Favaron, Flandrin and Li [18]). Let P = v1...vn be a hamiltonian
path of G. If v1vn /∈ E(G) and dG(v1) + dG(vn) ≥ n, then G is pancyclic.

In [23] the authors prove results similar to Lemma 2.5 for pairs of vertices that lie further
from each other on a hamiltonian cycle and have larger sums of degrees. The following
lemma provides a more precise description of the cycle structure in the specific case that we
are interested in.

Lemma 2.8 (WW). Let G be a graph with n vertices and a hamiltonian cycle C. Let
x, y ∈ V (G) satisfy dC(x, y) = 3 and dG(x) + dG(y) ≥ n+ 1, with x preceding y on C. Then
(i) if {x, x+, y−, y} induces a path or a cycle, then G is pancyclic or else missing only the
(n− 1)-cycle,
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(ii) if {x, x+, y−, y} induces Z1, then G is pancyclic,
(iii) if xy ∈ E(G) and {x, x+, y−, y} induces K4 − e, then G is pancyclic,
(iv) if xy /∈ E(G) and {x, x+, y−, y} induces K4 − e, then G is pancyclic or else dG(x) +
dG(y) = n+ 1 and G is missing only the (n− 2)-cycle.

Proof. Suppose that the path xx+y−y is induced in G. Then the path yC+x is a hamiltonian
path in G′ = G− {x+, y−}. Since dG′(x) + dG′(y) ≥ n− 1, it follows from Lemma 2.7 that
G′ is pancyclic.

If {x, x+, y−, y} induces a cycle, then G′ is hamiltonian, with the cycle xyC+x being
its Hamilton cycle. Now the pancyclicity of G′ follows from Lemma 2.3. Hence, there are
[3, n− 2]-cycles in G. Since G is hamiltonian, this proves (i).

Now suppose that the set {x, x+, y−, y} induces Z1. Note that this implies that there
is a cycle of length n − 1 in G. Consider again the graph G′ = G − {x+, y−}. Since
dG′(x) + dG′(y) ≥ n − 2, the path yC+x is a hamiltonian path in G′ and xy is not an edge
in G, it follows from Lemma 2.7 that G′ is pancyclic. Thus (ii) holds.

Under the assumptions of (iii) exactly one of the edges xy− and x+y is missing in G. If
xy− /∈ E(G), then set G′ = G − y−. Otherwise let G′ = G − x+. In either case G′ is a
hamiltonian graph with a Hamilton cycle C ′ such that dC′(x, y) = 2. Since dG′(x)+dG′(y) ≥
n, it follows from Lemma 2.3 that G′ is pancyclic. Pancyclicity of G′ implies pancyclicity of
G.

Finally, assume that the vertices from the set {x, x+, y−, y} induce K4− e with x and y
being non-adjacent. If dG(x)+dG(y) > n+1, then the graph G′ = G−x+ with a hamiltonian
cycle C ′ = xy−yC+x is pancyclic by Lemma 2.5. This implies pancyclicity of G. Now assume
dG(x) + dG(y) = n + 1. Note that this implies that at least one of the vertices x and y has
at least (n + 1)/2 neighbours in G. Without loss of generality assume dG(x) ≥ (n + 1)/2.
Again, consider G′ = G− x+. Since now dG′(x) + dG′(y) = n− 1, it follows from Lemma 2.6
that G′ is pancyclic, unless it is bipartite or else missing a cycle C3 or a cycle Cn−2.

Suppose that G′ is missing a cycle of length three. Consider now the path P = y+C+x−.
Clearly, dP (x) ≥ (n + 1)/2 − 2 = (|V (P )| + 1)/2. Since x can not be adjacent to two
consecutive vertices of P , it follows that |V (P )| is odd and x is adjacent to every second
vertex of P , beginning with y+, i.e., NP (x) = {y+, y+++, ..., x−−−, x−}. It follows that the
set {xC+vx : v ∈ NP (x)} consists of cycles in G of all possible odd lengths greater than five.
Similarly, for cycles of all even lengths take the set {xy−C+vx : v ∈ NP (x)}. Since xx+y−x

is a triangle in G, this implies that G is pancyclic.
Now suppose that G′ contains a cycle of length three. Clearly, G′ is not bipartite. By

Lemma 2.6 G′ is pancyclic or missing only (n− 2)-cycle. Thus the same is true for G, since
it contains a cycle xy−C+x of length n − 1 and a hamiltonian cycle. The proof of (iv) is
complete.

Note that Lemma 2.8 does not provide information on the case when the set {x, x+, y−, y}
induces a complete graph. It seems that the description of the cycle structure of G in this
case is not as straightforward as in the other cases.
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Lemma 2.9 (WW [52]). Let G be a graph of order n. Let u, v ∈ V (G) and let i be some
non-negative integer less than n − 1. Let X be a set of i vertices {x1, ..., xi} ⊂ V (G) such
that (N [u]∪N [v])∩X = ∅. Suppose that there are [n− i+1, n] cycles in G and G′ = G−X
is hamiltonian with a Hamilton cycle C. Then

1. if dC(u, v) ≤ 2 and dG(u) + dG(v) ≥ n− i+ 1, then G is pancyclic,

2. if dC(u, v) = 1, dG(u) + dG(v) ≥ n− i and there is a (|G′| − 1)-cycle in G′, then G is
pancyclic.

Proof. The first statement is true, since under these assumptions G′ is pancyclic by Lemma
2.3 or 2.5. If the second case occurs, G′ is pancyclic by Lemma 2.4. Pancyclicity of G′

implies pancyclicity of G.

We close this section with introducing notation regarding some of the special graphs
appearing throughout the rest of the thesis (recall that some of them are represented on Fig.
2.2 on page 6). We say that a set of vertices A = {v1, v2, ..., vi} ⊂ V (G) induces a path Pi

in G, if the subgraph of G induced by A is a path Pi, with its edges being v1v2, v2v3, ...,
vi−1vi. If A = {v1, v2, v3, v4} and G[A] is isomorphic to K1, 3 with v1v2, v1v3, v1v4 being the
edges of this claw, we say that {v1; v2, v3, v4} induces K1, 3 (or induces a claw).

Let A = {v1, v2, v3, v4, v5, v6, v7}. If A induces D in G, with {v1, v2, v3} inducing a
triangle and {v5, v4, v2, v3, v6, v7} inducing a path, we say that {v1, v2, v3; v4, v5; v6, v7}
induces a D (or induces a deer).

Finally, let A = {v1, v2, v3, v4, v5}. If G[A] is isomorphic to H, with v1 being the vertex
of degree four in H, and the only edges of H not containing v1 being v2v3 and v4v5, we say
that {v1; v2, v3; v4, v5} induces an H.
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3 Proof of Theorem 1.19

The basic tool applied in the proof of Theorem 1.19 is the following result, stated implicitly
in [5].

Theorem 3.1 (Bondy [5]). Let G be a 2-connected graph of order |V (G)| ≥ k and let
P = v1...vm be a path of maximum length in G. If dG(v1) +dG(vm) ≥ k, then there is a cycle
of length at least k in G.

In [5], in the first paragraph of the proof of Theorem 1, the assumptions of Theorem 1
are used to prove the existence of a longest path satisfying the assumptions of Theorem 3.1.
In the remaining part of the proof it is showed that the assumptions of Theorem 3.1 imply
the existence of a cycle of length at least k.

For the convenience of the reader, we restate Theorem 1.19 below.

Theorem 1.19 (WW [51]) Let G be a 2-connected graph with n vertices. If 3 ≤ k ≤ n and
G ∈ F({K1, 3, P4}, k), then there is a cycle of length at least k in G.

We use the general idea of the proof of Theorem 1.17. In our case, however, this leads to
much more complex considerations. The idea is to choose a longest path in G that possesses
some specific properties and to seek for a contradiction with Theorem 3.1.

Proof of Theorem 1.19: Suppose that there are no cycles of length at least k in G. It
will be shown that this leads to the existence of a longest path P = v1...vm in G such that
dG(v1) + dG(vm) ≥ k, contradicting Theorem 3.1.

For a given longest path P = v1...vm in G let vlP be the last neighbour of v1 along P ,
i.e., lP = max{i : v1vi ∈ E(G)}, and let vnP

be the last nonneighbour of v1 preceding vlP ,
that is nP = max{i : i < lP and v1vnP

/∈ E(G)}.
Clearly, lP > 2. Furthermore, it follows from 2-connectivity of G that lP < m, since

otherwise there would be either a hamiltonian cycle or a path longer than P in G. Next
observe that there exists a longest path P with nP > 2. If this is not the case and nP = 1,
let Q be a path from vi to vj, i ≤ lP −1, j ≥ lP +1, such that V (P )∩V (Q) = {vi, vj}. Then
form the path P ′ = vj−1P

−vi+1v1P
+viQ

+vjP
+vm, which is a longest path with lP ′ ≥ j > lP ,

a contradiction when P is chosen to have the largest lP value.
Fix a longest path P = v1...vm with nP of largest possible value. With the above

observations it will next be shown that there exists a longest path with one of its end-
vertices being vm and the other having degree at least k/2. To do this, suppose that
dG(v1) < k/2. Note that, since nP > 2, we have dG(vnP

) < k/2, since otherwise the
path vnP

P−v1vnP +1P
+vm is a longest path with dG(vnP

) ≥ k/2. Since G ∈ F(K1, 3, k),
it follows that {vnP +1; v1, vnP

, vnP +2} can not induce a claw. Thus vnP +2 is adjacent
to at least one of the vertices v1 and vnP

. Before the proof divides into subcases, we
note that dG(vnP +1) < k/2, since by the previous observation at least one of the paths
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vnP +1P
−v1vnP +2P

+vm or vnP +1v1P
+vnP

vnP +2P
+vm is a longest path in G beginning with

vnP +1.
Throughout the proof, whenever we declare a contradiction due to a discovered induced

subgraph of G isomorphic to the claw or the path P4, it is because the subgraph does not
satisfy Fan’s condition with constant k.

Case 1: v1vnP +2 ∈ E(G), vnP
vnP +2 /∈ E(G)

Note that under the assumptions of this case we have m ≥ nP +3. We begin with crucial
pieces of information regarding the degree of the vertex vnP +2 and the adjacency structure
of its neighbourhood.

Claim 3.1. vnP +3vnP
, vnP +3vnP +1 /∈ E(G) and dG(vnP +2) ≥ k/2.

Proof. Note that if vnP +3 is adjacent to vnP
, then under the assumptions of this case the

path P ′ = vnP
P−v1vnP +1P

+vm is a longest path in G with nP ′ ≥ nP + 2, contradicting the
choice of P . Similarly, if vnP +3vnP +1 ∈ E(G), then P ′ = vnP

P−v1vnP +2vnP +1vnP +3P
+vm is

a longest path with nP ′ ≥ nP + 1. Thus vnP +3 is adjacent neither to vnP
, nor to vnP +1, and

so vnP
vnP +1vnP +2vnP +3 is an induced path P4 in G. Since G ∈ F(P4, k) and dG(vnP

) < k/2,
it follows that dG(vnP +2) ≥ k/2.

Claim 3.2. dG(v2) < k/2 and v2vnP +3 /∈ E(G), v2vnP +1 ∈ E(G).

Proof. Clearly, if dG(v2) ≥ k/2, then v2P
+vnP +1v1vnP +2P

+vm is a longest path with
dG(v2) ≥ k/2, and if v2vnP +3 ∈ E(G), then, by Claim 3.1, vnP +2v1vnP +1P

−v2vnP +3P
+vm

is a longest path dG(vnP +2) ≥ k/2.
Now suppose that v2 is not adjacent to vnP +1. Since dG(v2), dG(vnP +1) < k/2 and

G ∈ F({K1, 3, P4}, k), the set {v2, v1, vnP +1, vnP
} can not induce P4 and the set

{vnP +2; v2, vnP +1, vnP +3} can not induce a claw. It follows from Claim 3.1 that v2vnP
∈ E(G)

and v2vnP +2 /∈ E(G). But now v2vnP
vnP +1vnP +2 is an induced P4 in G, a contradiction.

Claim 3.3. There are no edges between the vertices v1, vnP
, vnP +1 and the vertices from the

set {vnP +3, ..., vm}.

Proof. From the definition of nP it follows that to prove that v1 is not adjacent to any of
the vertices from the set {vnP +3, ..., vm} it suffices to show that it is not adjacent to vnP +3.
This is clearly true, since otherwise vnP +2P

−v1vnP +3P
+vm would be a longest path with

dG(vnP +2) ≥ k/2, by Claim 3.1.
Recall that vnP

vnP +3 /∈ E(G) and vnP +1vnP +3 /∈ E(G), by Claim 3.1, and v2vnP +1 ∈ E(G),
by Claim 3.2. Suppose that vnP

is adjacent to vnP +j for some 3 < j ≤ m−nP . Then the path
P ′ = vnP

P−v2vnP +1v1vnP +2P
+vm is a longest path in G with nP ′ ≥ nP + 3, contradicting

the choice of P .
From the observations made so far it follows that if vnP +1 is adjacent to some vertex vnP +j

with 3 < j ≤ m− nP , then {vnP +1; v1, vnP
, vnP +j} induces a claw. Since dG(v1), dG(vnP

) <
k/2, this contradicts G being a graph from the family F(K1, 3, k).
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The next claim provides a characterization of properties of the vertices that lie on P

between v1 and vnP
.

Claim 3.4. For i ∈ {2, ..., nP} the following holds.
(i) dG(vi) < k/2,
(ii) vivnP +3 /∈ E(G),
(iii) vivnP +1 ∈ E(G),
(iv) either vi is adjacent to both v1 and vnP +2 or else it is not adjacent to any of them,
(v) vi is not adjacent to any of the vertices from the set {vnP +3, ..., vm}.

Proof. The proof is by induction on i. For i = 2 the statements (i), (ii) and (iii) are true
by Claim 3.2. To show that the condition (iv) holds, we first observe that v2 is adjacent
to v1. Suppose v2vnP +2 /∈ E(G). Then under the assumptions of the case and depend-
ing on the existence of the edge v2vnP

, either vnP
v2v1vnP +2 is an induced path or the set

{vnP +1; v2, vnP
, vnP +2} induces a claw. Since the degrees of v1, v2 and vnP

are strictly less
than k/2, this contradicts G being a member of the family F({K1, 3, P4}, k).

For the proof of (v) suppose that v2 is adjacent to some vertex v ∈ {vnP +3, ..., vm}. The
path vv2vnP +1vnP

can not be an induced one, since dG(v2), dG(vnP
) < k/2. Thus it follows

from Claim 3.3 that v2 is adjacent to vnP
. But now {v2; v, vnP

, v1} induces a claw with
dG(v2), dG(vnP

) < k/2, a contradiction.
Now assume that for some i < nP the conditions (i)-(v) hold for the vertices v2, ..., vi.

It will be shown that they hold also for vi+1.
First observe that dG(vi+1) < k/2, since otherwise, by the condition (iii) for vi, the

path vi+1P
+vnP +1viP

−v1vnP +2P
+vm is a longest path in G with its first vertex having de-

gree at least k/2. The validity of the condition (ii) is also straightforward: if vi+1vnP +3 ∈
E(G), then a longest path with its first vertex having degree not less than k/2 is the path
vnP +2v1P

+vivnP +1P
−vi+1vnP +3P

+vm, by Claim 3.1.
Now suppose that the condition (iii) is not true, i.e., that vi+1vnP +1 is not an edge in G.

It follows that vi+1 is not adjacent to vnP +2, since otherwise, by (ii) for vi+1 and by Claim
3.3, the set {vnP +2; vi+1, vnP +1, vnP +3} induces a claw with dG(vi+1), dG(vnP +1) < k/2.

If vivnP
is not an edge inG, then by (iii) for vi, the vertex vi+1 is adjacent to vnP

in order to
avoid induced path vi+1vivnP +1vnP

with dG(vi), dG(vnP
) < k/2. But now vi+1vnP

vnP +1vnP +2

is an induced P4 with none of the vertices vi+1 and vnP +1 having degree not less than k/2,
a contradiction. Hence, vivnP

∈ E(G).
Note that vi can not be adjacent to vnP +2. If this is not the case, then, depending on the

existence of the edge vi+1vnP
, either {vi; vnP

, vnP +2, vi+1} is an induced claw in G or else
vi+1vnP

vnP +1vnP +2 is an induced path P4 that does not satisfy the Fan’s condition.
From the fact that vivnP +2 is not an edge in G and from the condition (iv) for vi it

follows that viv1 /∈ E(G). This implies that vi+1 is adjacent to v1, since otherwise the path
vi+1vivnP +1v1 is an induced P4 with dG(v1), dG(vi) < k/2. But now vivi+1v1vnP +2 is an
induced P4 with dG(v1), dG(vi) < k/2, a contradiction. Thus the condition (iii) holds for
vi+1.
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To show that the condition (iv) is satisfied by vi+1, first suppose that vi+1vnP
/∈ E(G).

Then vi+1 is adjacent to both v1 and vnP +2 to avoid induced claws {vnP +1; vi+1, vnP
, v1} and

{vnP +1; vi+1, vnP
, vnP +2} with both vi+1 and vnP

having degrees less than k/2.
Now suppose that vi+1 is adjacent to vnP

. If v1 is a neighbour of vi+1, then the same is
true for vnP +2, since otherwise vnP

vi+1v1vnP +2 is an induced P4 with dG(v1), dG(vnP
) < k/2.

Similarly, vi+1vnP +2 ∈ E(G) implies that vi+1 is adjacent to v1, to avoid induced path
vnP

vi+1vnP +2v1. This proves (iv).
Finally, suppose that vi+1 is adjacent to some vertex v ∈ {vnP +3, ..., vm}. By Claim 3.3

we can assume that i+ 1 < nP . If vi+1v1 /∈ E(G), then v1vnP +1vi+1v is an induced path P4,
by Claim 3.3. Since the degrees of both v1 and vi+1 are less than k/2, this contradicts G
belonging to the family F(P4, k). Now suppose that vi+1 is adjacent to v1. Then vi+1vnP

/∈
E(G) to avoid induced claw {vi+1; v1, vnP

, v}. But now vnP
vnP +1vi+1v is an induced path

P4, by Claim 3.3. This final contradiction shows that the property (v) holds for vi+1. By
mathematical induction the claim is true.

Claim 3.5. For every i ∈ {1, ..., nP + 1} the neighbourhood NG(vi) of the vertex vi is a
subset of the set {v1, v2, ..., vnP +2}.

Proof. Note that by Claims 3.3 and 3.4 the vertex vi, with 1 ≤ i ≤ nP +1, has no neighbours
in the set {vnP +3, ..., vm}. Thus to prove the claim it suffices to show that vi is not adjacent
to any v ∈ V (G) \ V (P ). Clearly, if one of the vertices v1, v2 and vnP +1 was adjacent to
some vertex v /∈ V (P ), this would create a path in G longer than P , i.e., one of the paths
vv1P

+vm, vv2P
+vnP +1v1vnP +2P

+vm or vvnP +1P
−v1vnP +2P

+vm. Hence, the claim is true for
i ∈ {1, 2, nP + 1}.

For a proof by induction assume that the claim holds for the values from the set
{1, 2, ..., i}, where 2 ≤ i ≤ nP − 1. It will be shown that this implies the validity of
the claim for i+ 1.

Suppose that there is a vertex v ∈ V (G) \ V (P ) adjacent to vi+1. Then v is not adjacent
to any of vi and vi+2, since such an edge would create a path in G longer than P . Recall
that dG(vi), dG(vi+2) < k/2, by Claim 3.4, and so {vi+1; vi, v, vi+2} can not induce a claw
in G. Thus vivi+2 ∈ E(G). We observe that if vi+1 is not adjacent to some vertex vk with
1 ≤ k ≤ i − 1, then choosing k of largest possible value gives an induced path vkvk+1vi+1v,
by the induction hypothesis. This contradicts G being a member of the family F(P4, k), by
Claim 3.4. Thus vi+1 is adjacent to every vertex preceding it on the path P , in particular
v1vi+1 ∈ E(G). But now vvi+1v1P

+vivi+2P
+vm is a path longer than P , a contradiction.

Now it follows from Claim 3.5 that G−vnP +2 is not connected. This contradicts G being
2-connected and completes the proof of this case.

Case 2: v1vnP +2 /∈ E(G), vnP
vnP +2 ∈ E(G)

We begin the proof of this case with a counterpart of Claim 3.3.
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Claim 3.6. There are no edges between the vertices v1, vnP
, vnP +1 and the vertices from the

set {vnP +3, ..., vm}.

Proof. The validity of the claim for v1 follows immediately from the definition of nP and the
assumptions of this case. For vnP +1 we first observe that vnP +1vnP +3 /∈ E(G), since otherwise
the path P ′ = vnP +2vnP

P−v1vnP +1vnP +3P
+vm is a longest path in G with nP ′ ≥ nP + 1,

contradicting the choice of P . With this observation it is easy to see that if vnP +1v ∈ E(G) for
some vertex v ∈ {vnP +4, ..., vm}, then the path P ′ = vnP +1v1P

+vnP
vnP +2P

+vm is a longest
path with nP ′ ≥ nP + 3. Finally, if vnP

has a neighbour in the set {vnP +3, ..., vm}, say v,
then v1vnP +1vnP

v is an induced P4 in G with dG(vnP
), dG(v1) < k/2. A contradiction.

Next we establish some properties of the vertices that preceed vnP
on P .

Claim 3.7. For i ∈ {1, 2, ..., nP − 2} the following holds.
(i) dG(vnP−i) < k/2,
(ii) vnP−i is adjacent to at least one of the vertices v1 and vnP +1,
(iii) vnP−ivnP +2 ∈ E(G) or else vnP−i is adjacent to v1,
(iv) vnP−i is not adjacent to any of the vertices from the set {vnP +3, ..., vm}.

Proof. We use induction on i. For i = 1 it is clear that dG(vnP−1) < k/2, since the path
vnP−1P

−v1vnP +1vnP
vnP +2P

+vm is a longest path in G beginning with vnP−1. Thus (i) holds.
Recall that the degrees of both v1 and vnP

are less than k/2, and so the path vnP−1vnP
vnP +1v1

can not be an induced one. This implies (ii).
To show (iii) assume that vnP−1 is not adjacent to vnP +2 and suppose v1vnP−1 /∈ E(G).

Then vnP−1 is adjacent to vnP +1 by (ii). But this implies that {vnP +1; v1, vnP−1, vnP +2}
induces a claw. By (i), this contradicts G belonging to the family F(K1, 3, k).

For the proof of (iv) suppose that vnP−1 has a neighbour, say v, in the set {vnP +3, ..., vm}.
Then vnP−1 is not adjacent to v1, since otherwise {vnP−1; v1, vnP

, v} induces a claw, by Claim
3.6. It follows from (ii) that vnP−1vnP +1 ∈ E(G). But now v1vnP +1vnP−1v is an induced path
P4 with dG(v1), dG(vnP−1) < k/2, a contradiction. This proves (iv) for i = 1.

Now assume that the claim holds for the values from the set {1, 2, ..., i}, where
1 ≤ i ≤ nP − 3. It will be shown that this implies the validity of the claim for i+ 1.

By the condition (iii) for vnP−i there is a longest path inG beginning with vnP−i−1, namely
vnP−i−1P

−v1vnP +1P
−vnP−ivnP +2P

+vm or vnP−i−1P
−v1vnP−iP

+vm. Thus dG(vnP−i−1) < k/2,
proving (i). For the proof of (ii) suppose that vnP−i−1 is not adjacent neither to v1 nor to
vnP +1. This implies that both v1 and vnP +1 are neighbours of vnP−i, since otherwise, by (ii),
one of the paths vnP−i−1vnP−iv1vnP +1 and vnP−i−1vnP−ivnP +1v1 would be an induced P4 in G.
Furthermore, vnP

is not adjacent to vnP−i−1, to avoid induced path vnP−i−1vnP
vnP +1v1. It

is also not adjacent to vnP−i, since otherwise {vnP−i; v1, vnP−i−1, vnP
} induces a claw. But

now vnP−i−1vnP−ivnP +1vnP
is an induced path with four vertices. Since the degrees of the

vertices of this path are less than k/2, this contradicts G belonging to the family F(P4, k)
and proves (ii).

Now assume vnP−i−1vnP +2 /∈ E(G) and suppose that vnP−i−1 is not adjacent to v1. From
the condition (ii) for vnP−i−1 it follows that {vnP +1; v1, vnP−i−1, vnP +2} induces a claw. Since
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the degrees of both v1 and vnP−i−1 are strictly less than k/2, this is a contradiction. Thus
(iii) holds.

Finally, suppose that vnP−i−1 is adjacent to some vertex v ∈ {vnP +3, ..., vm}. Claim 3.6
implies that nP − i − 1 > 1. If vnP−i−1v1 /∈ E(G), then it follows from the condition (ii)
and Claim 3.6 that the path v1vnP +1vnP−i−1v is an induced P4 in G with the degrees of both
v1 and vnP−i−1 being less than k/2. Thus vnP−i−1v1 ∈ E(G). This implies that vnP−i−1

is not adjacent to vnP
, since otherwise {vnP−i−1; v1, vnP

, v} induces a claw, by Claim 3.6.
Furthermore, in order to avoid induced path vnP

vnP +1vnP−i−1v, the vertex vnP−i−1 can not be
adjacent to vnP +1. But now we obtain an induced path vnP−i−1v1vnP +1vnP

, a contradiction.
By mathematical induction the claim is true.

Claim 3.8. For every i ∈ {0, 1, ..., nP} the neighbourhood NG(vnP−i+1) of the vertex vnP−i+1

is a subset of the set {v1, ..., vnP +2}.

Proof. Note that by Claims 3.6 and 3.7 the vertex vnP−i+1, with 0 ≤ i ≤ nP , has no
neighbours in the set {vnP +3, ..., vm}. Thus to prove the claim it suffices to show that vnP−i+1

is not adjacent to any v ∈ V (G) \V (P ). Clearly, if one of the vertices v1, vnP
and vnP +1 was

adjacent to some vertex v lying outside the path P , this would create a path in G longer
than P , i.e., one of the paths vv1P

+vm, vvnP
P−v1vnP +1P

+vm or vvnP +1v1P
+vnP

vnP +2P
+vm.

Hence, the claim is true for i ∈ {0, 1, nP}.
For a proof by induction assume that the claim holds for the values from the set {0, 1, ..., i},

where 1 ≤ i ≤ nP − 2. It will be shown that this implies the validity of the claim for i+ 1.
Suppose that there is a vertex v ∈ V (G)\V (P ) adjacent to vnP−i. Then v is not adjacent

to any of vnP−i−1 and vnP−i+1, to avoid creating a path in G longer than P . Recall that
dG(vnP−i−1), dG(vnP−i+1) < k/2, by Claim 3.7 and by the fact that dG(v1) < k/2, and so
{vnP−i; vnP−i−1, v, vnP−i+1} can not induce a claw in G. Thus vnP−i−1vnP−i+1 ∈ E(G). Next
we note that if vnP−i is not adjacent to some vertex vk with nP − i < k ≤ nP , then choosing
k of smallest possible value gives an induced path vvnP−ivk−1vk, by the induction hypothesis.
This contradicts G being a member of the family F(P4, k), by Claim 3.7 and by the fact that
dG(vnP

) < k/2. Thus vnP−i is adjacent to every vertex from the set {vnP−i+1, ..., vnP +1}.
But now the path vvnP−ivnP +1v1P

+vnP−i−1vnP−i+1P
+vnP

vnP +2P
+vm is a path longer than

P , a contradiction.

Similarly to the previous case of the proof, now it follows from Claim 3.8 that G− vnP +2

is not connected, a contradiction with the assumption of 2-connectivity of G.

Case 3: v1vnP +2 ∈ E(G), vnP
vnP +2 ∈ E(G)

Recall that the degrees of the vertices v1, vnP
and vnP +1 are less than k/2. Keeping that

in mind, we first establish some basic facts regarding the vertex vnP−1.

Claim 3.9. dG(vnP−1) < k/2, vnP−1vnP +1 /∈ E(G), vnP−1v1 ∈ E(G).

Proof. Note that under the assumptions of this case the path vnP−1P
−v1vnP +1vnP

vnP +2P
+vm

is a longest path in G. Thus dG(vnP−1) < k/2. Now suppose that vnP−1 is adjacent to vnP +1.
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Then the path P ′ = v1P
+vnP−1vnP +1vnP

vnP +2P
+vm is a longest path in G with nP ′ = np +1,

contradicting the choice of P . Hence, vnP−1vnP +1 /∈ E(G). This implies that vnP−1v1 ∈ E(G),
since otherwise the path v1vnP +1vnP

vnP−1 would be an induced P4 in G.

Claim 3.10. Every neighbour of v1 in G is adjacent to at least one of the vertices vnP−1 and
vnP +1.

Proof. If this is not the case, then there exists a neighbour v of v1 such that
{v1; vnP−1, vnP +1, v} induces a claw, by Claim 3.9. Since dG(vnP +1) ≤ k/2 and, by Claim
3.9, dG(vnP−1) ≤ k/2, this contradicts G belonging to the family F(K1, 3, k).

Now we focus our attention on the edges vnP−1vnP +2, vnP−1vnP +3 and vnP +1vnP +3. We
begin with the following observation.

Claim 3.11. vnP +3 is adjacent to exactly one of the vertices vnP−1 and vnP +1.

Proof. Suppose the contrary. If the vertex vnP +3 is not adjacent to any of the vertices
vnP−1, vnP +1, then it follows from Claim 3.10 that v1vnP +3 /∈ E(G). Now, depending on the
existence of the edge vnP

vnP +3, we obtain induced path vnP +3vnP
vnP +1v1 or induced claw

{vnP +2; vnP
, v1, vnP +3}, a contradiction.

If both vnP +3vnP−1 and vnP +3vnP +1 are edges inG, then the path P ′ = vnP−1P
−v1vnP +2vnP

vnP +1vnP +3P
+vm is a longest path in G with nP ′ ≥ nP + 2, by Claim 3.9. This contradicts

the choice of P .

Claim 3.12. vnP−1vnP +3 is not an edge in G.

Proof. Suppose that the opposite holds. If vnP−1vnP +2 is not an edge in G, then the path
P ′ = vnP−1P

−v1vnP +1vnP
vnP +2vnP +3P

+vm is a longest path in G with nP ′ ≥ nP + 2, contra-
dicting the choice of P . Thus vnP−1vnP +2 ∈ E(G).

It follows from Claim 3.11 that vnP +1 is not adjacent to vnP +3. Since
dG(vnP +1) < k/2 and, by Claim 3.9, dG(vnP−1) < k/2, the path vnP +1vnP

vnP−1vnP +3 can
not be an induced one. Thus it follows from Claim 3.9 that vnP

vnP +3 is an edge in G. Now
to avoid induced path v1vnP +1vnP

vnP +3, the vertex v1 is adjacent to vnP +3. But then the path
P ′ = v1P

+vnP−1vnP +2vnP +1vnP
vnP +3P

+vm is a longest path in G with nP ′ ≥ np + 2, a con-
tradiction.

From Claims 3.11 and 3.12 it follows that the vertex vnP +3 is not adjacent to vnP−1 and
that it is adjacent to vnP +1. Next we observe that to avoid induced path vnP−1vnP

vnP +1vnP +3

the vertex vnP +3 is adjacent to vnP
, by Claim 3.9. It follows that vnP +3 is adjacent also to v1,

since otherwise the path v1vnP−1vnP
vnP +3 is an induced one, also by Claim 3.9. But now, de-

pending on the existence of the edge vnP−1vnP +2, one of the paths
P

′ = v1P
+vnP−1vnP +2P

−vnP
vnP +3P

+vm and P ′′ = vnP−1P
−v1vnP +1vnP +2vnP

vnP +3P
+vm is a

longest path in G. Since nP ′ ≥ nP + 2 and nP ′′ ≥ nP + 1, this contradicts the choice of
P . This final contradiction completes the proof of this case and shows that there exists a
longest path in G with one if its end vertices being vm and with the other one having degree
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at least k/2.

In the above argument, each longest path considered has vm as one of the end vertices.
Thus, since one of the end vertices of P has degree not less than k/2, it could have been
initially assumed that P is a longest path with dG(vm) ≥ k/2 and with nP of largest possible
value. The above argument then shows that there exists a longest path P with both end
vertices of degree not less than k/2. This contradiction with Theorem 3.1 completes the
proof of the theorem.
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4 Proof of Theorem 1.20

We begin this Chapter with restating Theorem 1.20.

Theorem 1.20 (WW [51]) Let G be a 2-connected graph of order n ≥ 3. If G ∈ F({K1, 3, P4}, n),
then G is pancyclic unless n = 4r, r > 2 and G is F4r, or n is even and G = Kn/2, n/2 or
else n ≥ 6 and G = Kn/2, n/2 − e.

We first prove three auxiliary lemmas that deal with the exceptional non-pancyclic graphs
and establish the existence of short cycles in a graph satisfying the assumptions of Theorem
1.20.

Lemma 4.1 (WW [51]). Let G be a 2-connected, bipartite graph of order n ≥ 3. If G ∈
F({K1, 3, P4}, n), then n is even and either G = Kn/2, n/2 or else n ≥ 6 and G = Kn/2, n/2−e.

Proof. First suppose that G is {K1, 3, P4}-free. Then it follows from Theorem 1.11 that G
is a cycle. Since there are no induced paths with four vertices in G, G is a cycle K2, 2.

Now assume that G contains an induced claw or an induced path P4. Let (X, Y ) be a
bipartition of V (G). It follows from the assumptions that there is a vertex, say u, in G with
dG(u) ≥ n/2. Clearly, if |V (G)| = 4, then G is isomorphic to K2, 2. Since G is bipartite and,
by Theorem 1.19, hamiltonian, its order n is even. Thus assume |V (G)| ≥ 6. Without loss
of generality let X be the set of bipartition containing u. It follows that |Y | ≥ n/2 ≥ 3.
Note that since G ∈ F(K1, 3, n) and u together with any three of its neighbours induce a
claw, at most one neighbour of u has degree less than n/2. This implies |X| = |Y | = n/2.
By the symmetry, at most one vertex in X might have less neighbours than n/2. Let x ∈ X
and y ∈ Y be those only vertices in G, the degree of which is not necessarily equal to n/2.
Clearly, every vertex of Y other than y is adjacent to x and every vertex from X other than
x is adjacent to y. Thus, depending on the existence of the edge xy in G, G is isomorphic
either to Kn/2, n/2 or else to Kn/2, n/2 − e.

Note that under additional assumption of G not being a cycle Lemma 4.1 remains valid
if the pair {K1, 3, P4} is replaced by any of the pairs of subgraphs appearing in Theorem
1.11. Similarly, it seems that the next lemma also could be adapted for these other pairs.
This might be a good first step towards proving Conjecture 1.2 (proposed on page 10).

Lemma 4.2 (WW [51]). Let G be a 2-connected, non-bipartite graph of order n. If G ∈
F({K1, 3, P4}, n) and there are no cycles of length n− 1 in G, then G is isomorphic to F4r,
with r > 2.

Proof. Suppose that G is {K1, 3, P4}-free. Similarly to the previous Lemma, this implies
that G is a cycle K2, 2, by Theorem 1.11. This contradicts the assumption of G not being
bipartite. Hence, we can assume that G contains an induced claw or an induced path P4,
and so there are at least two heavy vertices in G.

Note that by Theorem 1.19 G is hamiltonian. It is easy to check that if G has no more
than five vertices, then it is pancyclic. Thus we assume |V (G)| ≥ 6. Let C = v0...vn−1v0 be a
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hamiltonian cycle in G. Clearly, under the assumptions of the Lemma there are no edges of
the form vivi+2 in G. In the following any arithmetic involving the subscripts of the vertices
of C is modulo n. We begin the proof with an observation regarding heavy vertices of G.

Claim 4.1. If vi is a heavy vertex in G, then at least one of the vertices vi−1 and vi+1 is
also heavy.

Proof. Suppose to the contrary that neither vi−1 nor vi+1 is heavy. Since G ∈ F(P4, n),
this implies that none of the paths vi−2vi−1vivi+1 and vi−1vivi+1vi+2 can be an induced one.
Since there are no cycles of length n − 1 in G, vi−2vi, vi−1vi+1, vivi+2 /∈ E(G), implying
that vi−2vi+1 and vi−1vi+2 are edges in G. Now consider the path P = vi+3C

+vi−3. Clearly,
dP (vi) ≥ n/2 − 2 = (|V (P )| + 1)/2. If vi is adjacent to two consecutive vertices of the
path, say vk and vk+1, then the cycle vi+1C

+vkvivk+1C
+vi−2vi+1 is a cycle of length n − 1,

a contradiction. This implies that |V (P )| is odd and that the neighbourhood of vi in P

is NP (vi) = {vi+3, vi+5, ..., vi−5, vi−3}. Clearly, if vi−1vi+3 ∈ E(G), then there is a cycle
of length n − 1 in G, namely vi+1vi+2vi−1vi+3C

+vi−2vi+1. Thus vi−1vi+3 /∈ E(G). But now
{vi; vi−1, vi+1, vi+3} induces a claw in G. Since neither vi−1 nor vi+1 is heavy, this contradicts
G being a member of the family F(K1, 3, n).

Claim 4.2. If vi is a heavy vertex in G, then dG(vi) = n/2.

Proof. By Claim 4.1 we may assume that both vi and vi+1 are heavy. If the degree of vi is
strictly greater than n/2, then dG(vi) + dG(vi+1) ≥ n + 1 and so G is pancyclic by Lemma
2.3. This contradicts the assumption of G missing the (n− 1)-cycle.

Claim 4.3. If vi and vi+1 are heavy vertices in G, then none of the vertices vi−2, vi−1, vi+2

and vi+3 is heavy and the vertices vi+4 and vi+5 are both heavy.
Furthermore, the path vi−2vi−1vivi+1vi+2vi+3 is an induced one, and vivi−3, vivi−4, vi+1vi+4,
vi+1vi+5 are edges in G.

Proof. Since G is missing the (n− 1)-cycle, it is not bipartite and, by Claim 4.2, the degrees
of both vi and vi+1 are equal to n/2, it follows by Lemma 2.4 that vi−2vi−1vivi+1vi+2vi+3 is
an induced path P6 in G and that vi is adjacent to vi−3 and vi−4, and vi+1 is adjacent to
vi+4 and vi+5. Thus, the last part of the claim holds. For a proof of the first part suppose
that vi−1 is heavy. Then applying Lemma 2.4 to the pair {vi−1, vi} leads to a contradiction
with the adjacency structure it provides, since vivi+3 /∈ E(G). Similar contradiction arises
if we suppose that vi+2 is heavy and apply Lemma 2.4 to the pair vi+1, vi+2. Thus neither
vi−1 nor vi+2 is heavy. Now suppose that vi−2 is heavy. From the previous observation and
from Claim 4.1 it follows that vi−3 is also heavy. Since vi−2vi+1 /∈ E(G) this again leads
to a contradiction with the structure described by Lemma 2.4, when applied to the pair
{vi−2, vi−3}. Similar contradiction is obtained if one assumes that vi+3 is heavy. Thus the
first part of the claim holds.

Now it will be shown that vi+4 is heavy. Suppose to the contrary that dG(vi+4) <

n/2. Since the degree of vi+2 is also less than n/2, the path vi+2vi+3vi+4vi+5 can not be
an induced one. This implies that vi+2vi+5 ∈ E(G). Similarly, to avoid induced claw
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{vi+1; vi, vi+2, vi+4}, vi is adjacent to vi+4. But these two edges create in G a cycle of
length n − 1, namely vi+2vi+5C

+vivi+4vi+3vi+2, a contradiction. Thus vi+4 is heavy. Since
dG(vi+3) < n/2, the heaviness of vi+5 follows from Claim 4.1.

Since there is a heavy vertex in G, we can assume without loss of generality that the
vertices v0 and v1 are heavy, by Claim 4.1. It follows from Claim 4.3 that v4 and v5 are also
heavy. Applying Claim 4.3 to the pair {v4, v5} we obtain the heaviness of the vertices v8 and
v9, and so on, i.e., every vertex vj of G with j ∈ {4k, 4k + 1} for some non-negative integer
k is heavy. Similarly, every vj ∈ V (G) with j ∈ {4k + 2, 4k + 3} is not heavy. Thus the
number of vertices of G is divisible by four. Let n = 4r, with r > 2. Then the set of heavy
vertices of G is {v0 v1, v4, v5, ..., v4r−4, v4r−3} and the remaining vertices are not heavy.

Claim 4.4. Every heavy vertex of G is adjacent to exactly one non-heavy vertex.

Proof. Suppose the contrary. Let vi be a heavy vertex of G with at least two non-heavy
neighbours. From Claims 4.1, 4.2 and 4.3 it follows that at least one of these neighbours, say
vk, satisfies dC(vi, vk) ≥ 5. Claims 4.1 and 4.3 imply that exactly one of the vertices vi−1 and
vi+1 is also not heavy. Thus {vi; vi−1, vi+1, vk} can not induce a claw, since G ∈ F(K1, 3, n).
Since there are no cycles of length n − 1 in G, it follows that vkvi−1 or vkvi+1 is an edge in
G.

Depending on which of the vertices vk−1 and vk+1 is heavy, either vk−1vk+2 or else vk−2vk+1

is an edge in G, by Claim 4.3. Denote this edge w1w2. This, together with the previous
observations, implies that either viC

+w1w2C
+vi−1vkvi or viC

−w2w1C
−vi+1vkvi is a cycle in

G. Since the length of this cycle is n− 1, this contradicts the assumption of G missing the
(n− 1)-cycle.

Claim 4.4 implies that, since there are 2r heavy vertices and 2r non-heavy vertices in G,
in order for the heavy vertices to be indeed heavy, every two of them are adjacent. Thus the
heavy vertices induce a clique inG and there is a perfect matching between this clique and the
set of non-heavy vertices, since every heavy vertex has a non-heavy neighbour that lies next
to it on the cycle C. Clearly, every non-heavy vertex v has a unique non-heavy neighbour u
with dC(v, u) = 1. To complete the proof it suffices to show that every non-heavy vertex is
adjacent to exactly one non-heavy vertex.

Suppose this is not the case. Let vk be a non-heavy vertex with vk+1 being also not
heavy. Suppose vk has a neighbour in a pair of non-heavy vertices {vm, vm+1}. From Claim
4.3 it follows that dC(vk, vm) ≥ 7. Since the heavy vertices of G induce a clique, either
vkvmvm−1vm+2C

+vk−1vm−2C
−vk or vkvm+1C

+vk−1vm−1C
−vk is a cycle in G. The length of

this cycle is n− 1. This final contradiction completes the proof of Lemma 4.2.

Lemma 4.3 (WW [51]). Let G be a 2-connected graph of order n ≥ 3 with at least two heavy
vertices. If G ∈ F({K1, 3, P4}, n), then
(i) if G is not bipartite, then G contains a triangle,
(ii) there is a cycle of length four in G.
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Proof. For the proof of (i) assume that G is not bipartite. As the statement is easy to verify
for n ≤ 4, we further assume that n ≥ 5. Let u be one of the heavy vertices in G. Clearly, if
there is an edge in the subgraph of G induced by the neighbourhood NG(u) of u, then there
is a triangle in G. Suppose that G[NG(u)] is edgeless. Since G ∈ F(K1, 3, n), it follows that
at most one of the neighbours of u is not heavy. Observe that G is hamiltonian by Theorem
1.19. Let C = v1...vnv1 be a hamiltonian cycle in G with v1 = u. Since at least one of the
vertices v2 and vn is heavy, Lemma 2.4 implies that there is a triangle in G.

Now it will be shown that (ii) holds. Let u and v be heavy vertices in G. Clearly, if u
and v have at least two common neighbours, then G contains C4. Thus suppose they have
at most one common neighbour. Since both u and v are heavy, it follows that uv ∈ E(G). If
u and v have no common neighbours, then V (G) = A∪B ∪{u, v}, where NG(u) = A∪{v},
NG(v) = B ∪ {u} and A ∩B = ∅. Since G is 2-connected, there is an edge ab in G for some
a ∈ A and b ∈ B. This edge creates the cycle uabvu of length four.

Assume that there is exactly one common neighbour of u and v in G, say w. Let
NG(u) = A∪ {v, w} and NG(v) = B ∪ {u, w}, where A∩B = ∅. Furthermore, assume that
NG[w]∩ (A∪B) = ∅ and that there are no edges between the sets A and B, since otherwise
there is a cycle of length four in G. From the 2-connectivity of G it follows that there is a
path connecting A and B that is disjoint with the vertices u and v. Hence, there is a vertex
in V (G) that does not belong to A ∪B ∪ {u, v, w}. This implies that

|A|+ |B|+ 3 < n.

On the other hand, since u and v are heavy, both A and B contain at least n/2− 2 vertices.
Thus

|A|+ |B|+ 4 ≥ n.

Hence, |A|+ |B|+ 4 = n, |A| = |B| = n/2− 2, and there is exactly one vertex, say x, in the
set V (G) \ (A ∪ B ∪ {u, v, w}). In order to create a path between A and B with the set of
vertices disjoint with both u and v, the vertex x is adjacent to some a ∈ A and some b ∈ B.
Hence, there is an induced path uaxb in G. Since none of the vertices from A ∪B is heavy,
this contradicts G belonging to the family F(P4, n).

Now we are ready to prove Theorem 1.20.

Proof of Theorem 1.20: Let G be a graph satisfying the assumptions of the Theorem.
Assume that G is not one of Kn/2, n/2, Kn/2, n/2− e and F4r. Lemmas 4.1 and 4.2 imply that
G is neither bipartite nor missing the (n − 1)-cycle. Furthermore, there is a hamiltonian
cycle in G, by Theorem 1.19.

Toward a contradiction, suppose that G is not pancyclic. Then it follows from Theorem
1.11 that G is not {K1, 3, P4}-free and so there are at least two heavy vertices in G. The
following claim gathers the pieces of information regarding cycles in G that we have obtained
so far.

Claim 4.5. G contains cycles of lengths three, four, n− 1 and n.
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Proof. The existence of the long cycles is clear. The fact that there are cycles C3 and C4 in
G follows from Lemma 4.3.

By Claim 4.5, if n ≤ 6, then G is pancyclic. So we assume that n ≥ 7.

Claim 4.6. If x, y ∈ V (G) are heavy in G, then for every hamiltonian cycle C in G holds
dC(x, y) ≥ 2. Furthermore, if dC(x, y) = 2, then dG(x) = dG(y) = n/2 and xy ∈ E(G).

Proof. Clearly, if dC(x, y) = 1, then G is pancyclic by Lemma 2.4. If dC(x, y) = 2 and the
degree of at least one of x and y is strictly greater than n/2, then G is pancyclic by Lemma
2.5. Finally, if dC(x, y) = 2 and x is not adjacent to y, pancyclicity of G follows from Claim
4.5 and Lemma 2.6.

Let u be a vertex in G with dG(u) ≥ n/2.

Case 1: G− u is not 2-connected.

Under the assumptions of this case there is a vertex in G, say v, such that G−{u, v} is not
connected. Since G is hamiltonian, we can set C = uy1...yh2vxh1 ...x1u to be a hamiltonian
cycle with H1 = {x1, ..., xh1} and H2 = {y1, ..., yh2} being the components of G − {u, v}.
The following simple observation is crucial for the further reasoning.

Claim 4.7. There are no heavy vertices in at least one of the sets H1 and H2.

Proof. Suppose this is not the case. Then h1 = h2 = (n−2)/2 and there are vertices x ∈ H1,
y ∈ H2 such that NG(x) = H1 ∪ {u, v} and NG(y) = H2 ∪ {u, v}. Thus uyvxu is a cycle of
length four in G. To this cycle all vertices from H2 can be appended, one-by-one, creating
cycles uy1yvxu, uy1y2yvxu, ..., uC+yyh2vxu, uC+yyh2−1yh2vxu, ..., uC+vxu. The vertices
from H1 can be appended to the longest of these cycles in a similar manner. In this way
we obtain [4, n]-cycles in G. Since G contains a triangle, by Claim 4.5, it is pancyclic. A
contradiction.

It follows from Claim 4.7 that for the rest of the proof of this case we may assume a lack
of heavy vertices in H1. We also assume that y1 is not heavy, since the opposite yields a
contradiction with Claim 4.6.

The next three claims describe the neighbourhood NG(u) of the vertex u.

Claim 4.8. NH2 [u] ⊂ NG[y1].

Proof. Otherwise u is adjacent to some vertex y ∈ H2 \NG[y1]. Then {u; y, y1, x1} induces
a claw in G. Since neither x1 nor y1 is heavy, this contradicts G being a member of the
family F(K1, 3, n).

Claim 4.9. NH1(u) = H1 and NH1 [u] induces a clique.
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Proof. Since the statement is clearly true for h1 = 1, assume that there are at least two
vertices in H1. Suppose that there is a vertex xi ∈ H1 such that uxi /∈ E(G). Choose
minimal i with this property. Then the path y1uxi−1xi is induced in G. Since there are no
heavy vertices in H1 and y1 is not heavy, this is a contradiction with G belonging to the
family F(P4, n).

Now suppose that there are two nonadjacent neighbours of u in H1, say x and x′. Then
{u; x, x′, y1} induces a claw, with none of its endvertices being heavy. Since G ∈ F(K1, 3, n),
this is a contradiction.

Claim 4.10. NH2(u) 6= H2.

Proof. Suppose the contrary. Then uyh2vxh1u is a cycle in G, by Claim 4.9. To this cycle
we can append the vertices from H1, one-by-one, also by Claim 4.9. To the longest of the
cycles obtained the vertices from H2 can be appended in a similar way. With this procedure
we obtain [4, n]-cycles in G. The pancyclicity of G follows from Claim 4.5.

It follows from Claim 4.10 that there is a vertex yk in NH2(u) such that yk+1 ∈ H2 and
u is not adjacent to yk+1. Choose minimal k satisfying these conditions.

Claim 4.11. yk is heavy. In consequence, k ≥ 2, both yk−1 and yk+1 are not heavy, and
yk−1yk+1 /∈ E(G).

Proof. Clearly, the path x1uykyk+1 is an induced one. Since G ∈ F(P4, n) and x1 is not
heavy, it follows that yk is heavy. Now Claim 4.6 implies that k ≥ 2 and that neither yk−1

nor yk+1 is heavy. The fact that yk−1 is not adjacent to yk+1 follows from Lemma 2.1.

Claim 4.12. There are [n− h1, n]-cycles in G.

Proof. Claim 4.11 implies that u is adjacent to y2. Thus C ′ = uy2C
+xh1u is a cycle of length

n − h1, by Claim 4.9. Since u is adjacent to every vertex of H1, all these vertices can be
appended to C ′, one-by-one, creating cycles of demanded lengths.

Claim 4.13. uv ∈ E(G).

Proof. Suppose the contrary. Then y1v ∈ E(G) to avoid induced path y1uxh1v with neither
y1 nor xh1 being heavy. Now it follows from Claims 4.8 and 4.9 that dG(y1) ≥ n/2− h1 + 1.
Set G′ = G − {x1, ..., xh1−1} if h1 > 1 or G′ = G otherwise. Since y1yk ∈ E(G), by Claim
4.8, G′ is hamiltonian, with C ′ = uyk−1C

−y1ykC
+xh1u being its hamiltonian cycle. Note

that dG′(y1) + dG′(yk) ≥ n/2 − h1 + 1 + n/2 = |G′|, by Claim 4.11, and that uy1y2u is a
triangle in G′. Thus it follows from Lemma 2.4 that G′ is either pancyclic or else missing
only (n− h1)-cycle. In either case Claim 4.12 implies pancyclicity of G.

The next claim provides a full description of the neighbourhood of the vertex y1.

Claim 4.14. NG[y1] = NH2 [u].
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Proof. Suppose that the claim is not true. Claim 4.8 implies that y1 is adjacent to v or to
some vertex y ∈ h2 which is a non-neighbour of u. It follows from Claims 4.8, 4.9 and 4.13
that dG(y1) ≥ n/2− h1 − 1 + 1 = n/2− h1. By Claim 4.13 the cycle uyk−1C

−y1ykC
+vu is a

hamiltonian cycle in G′ = G−H1. Since dG′(y1) + dG′(yk) ≥ |G′| and uy1y2u is a triangle in
G′, it follows from Lemma 2.4 that G′ is either pancyclic or else missing only (n− h1 − 1)-
cycle. By Claim 4.12, the same is true for G. Since uy2C

+vu is a cycle of length n− h1− 1,
G is pancyclic.

Claim 4.15. yh2 is adjacent neither to u nor to y1.

Proof. Suppose this is not the case. Then, by Claim 4.14, yh2 is adjacent to both u and
y1. If vyk /∈ E(G), then set G′ = G− (H1 ∪ {v}). Note that the cycle uyk−1C

−y1ykC
+yh2u

is a hamiltonian cycle in G′ and uy2C
+yh2u is a cycle of length |G′| − 1. Since dG′(y1) +

dG′(yk) ≥ |G′|, Lemma 2.4 implies that G′ is pancyclic. Together with Claim 4.12 this
implies pancyclicity of G.

Now assume vyk ∈ E(G). If vyk−1 ∈ E(G), then consider G′ = G −H1. Again, G′ is a
graph with both |G′|- and (|G′|− 1)-cycles, namely, vyk−1C

−uykC
+v and uy2C

+vu. Clearly,
dG′(u) + dG′(yk) ≥ |G′|, by Claim 4.11, and G′ is not bipartite. Thus G′ is pancyclic, by
Lemma 2.4, and so G is pancyclic, by Claim 4.12.

Hence, v is adjacent to yk and not adjacent to yk−1. Now to avoid {yk; yk−1, v, yk+1}
inducing a claw with neither yk−1 nor yk+1 being heavy, v is adjacent to yk+1. But then
yk+1vC

+uykC
−y1yh2C

−yk+1 is a hamiltonian cycle in G with both u and yk being heavy.
This contradicts Claim 4.6.

Observe that, by Claims 4.13, 4.14 and 4.15, the path y1uvyh2 is an induced one. Since
y1 is not heavy, it follows that v is heavy. In consequence, yh2 is not heavy, by Claim 4.6.

Claim 4.16. yh2 is adjacent to both yk and yk+1.

Proof. We first observe that vyh2−1 ∈ E(G). Clearly, otherwise the path xh1vyh2yh2−1 is an
induced one. Since neither xh1 nor yh2 is heavy, this contradicts G belonging to the family
F(P4, n).

Now suppose that yh2 is not adjacent to yk. Set G′ = G − (H1 ∪ yh2). It follows from
Claims 4.11, 4.13, 4.14 and 4.15 that dG′(y1)+dG′(yk) ≥ |G′|. Since y1ykC

+yh2−1vuyk−1C
−y1

is a hamiltonian cycle and uy2C
+yh2−1vu is a cycle of length |G′|−1 in G′, Lemma 2.4 implies

pancyclicity of G′. Thus there are [3, n−h1−1]-cycles in G and so G is pancyclic, by Claim
4.12.

Hence, yh2yk ∈ E(G). Suppose yh2yk+1 /∈ E(G). It follows from Claims 4.14 and 4.15
and the choice of k that {yk; y1, yh2 , yk+1} induces a claw. Since none of the endvertices of
this claw is heavy, this is a contradiction. Thus yh2 is adjacent to yk+1.

Claim 4.17. v is adjacent to every vertex from the set {yk, yk+1, ..., yh2}.

Proof. Suppose that the above statement is not true. Then there is a vertex ym ∈ NH2(v)
such that ym−1 ∈ {yk, yk+1, ..., yh2−1} and vym−1 /∈ E(G). Choose maximal m satisfying
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these conditions. Note that, since v is heavy and G− v is not 2-connected, we could change
u with v in the beginning of the proof of this case and repeat the reasoning conducted so
far, obtaining in particular that NH1(v) = H1, and NH2(v) 6= H2. Then ym would be an
equivalent of yk for u, and thus we could show that ym is heavy, and so on. Finally, similarly
to Claim 4.16, i.e., the existence of the edge yh2yk+1, by symmetry we would obtain the
existence of the edge y1ym−1. But then the cycle uykC

−y1ym−1C
−yk+1yh2C

−ymvC
+u is a

hamiltonian cycle in G with dG(u) + dG(yk) ≥ n, a contradiction with Claim 4.6.

Now it follows from Claim 4.17 that uykvu is a triangle inG. Since {y1, ..., yk−1} ⊂ NG(u)
and {yk+1, ..., yh2} ⊂ NG(v), we can append the vertices from H2 to this triangle, one-by-
one, obtaining cycles of all lengths from three up to h2 + 2 = n − h1. Since there are also
[n− h1, n]-cycles in G, by Claim 4.12, this implies that G is pancyclic. This final contradic-
tion completes the proof of this case.

Case 2: G− u is 2-connected.

Set G′ = G − u. Note that G′ is not hamiltonian, by Lemma 2.1, and that for every
heavy vertex v of G other than u we have dG′(v) ≥ n/2 − 1 = (n − 2)/2. Thus G′ ∈
F({K1, 3, P4}, n− 2). It follows from Theorem 1.19 that there is a cycle of length n− 2 in
G′, say C ′ = w1w2...wn−2w1. In the following any arithmetic involving the subscripts of the
vertices of C ′ is modulo n− 2.

Let x be the vertex of G′ such that x /∈ V (C ′). Lemma 2.1 implies that dG′(x) ≤ (n−2)/2.
Next we will show that this inequality is in fact strict.

Claim 4.18. dG′(x) < (n− 2)/2.

Proof. Suppose that the above statement is not true, i.e., that dG′(x) = (n − 2)/2. Since
G′ is not hamiltonian, we can assume NC′(x) = {w1, w3, ..., wn−3}. It is not difficult to see,
that if u is joined by an edge with two consecutive vertices of C ′, then G is pancyclic. Thus

n/2 ≤ dG(u) = dC′(u) + e(u, x) ≤ (n− 2)/2 + 1 = n/2,

implying that ux ∈ E(G) and u is joined to either each vertex of the set {w1, w3, ..., wn−3}
or else to each vertex of the set {w2, w4, ..., wn−2}. If the first case occurs, then G is clearly
pancyclic. Thus assume the latter is true. Since G is not bipartite, there is a chord in C ′

joining two vertices whose indices have the same parity. One can easily check that G is
pancyclic.

Claim 4.19. ux ∈ E(G) and dG(u) = n/2.

Proof. If at least one of the above conditions is not satisfied, then dC′(u) ≥ (n − 1)/2,
implying pancyclicity of G− x, by Lemma 2.1, and, in consequence, pancyclicity of G.

Fix k for which there are no k-cycles in G. It follows from Claim 4.5 and the existence
of C ′ that k ∈ {5, 6, ..., n − 3}. Furthermore, for every i from the set {1, ..., n − 2} we
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have e(u, wi) + e(u, wi+k−2) ≤ 1, since otherwise uwiC
′+wi+k−2u is a cycle Ck. This implies,

together with Claim 4.19, that

n− 2 ≤ 2dC′(u) =
n−2∑
i=1

[e(u, wi) + e(u, wi+k−2)] ≤ n− 2.

Thus dC′(u) = (n− 2)/2 and the following holds:

∀i ∈ {1, ..., n− 2} : e(u, wi) + e(u, wi+k−2) = 1 (1)

We also note that in order to avoid the cycle xwiC
′+wi+k−3ux of length k, for every i with

1 ≤ i ≤ n− 2 the following inequality holds:

e(x, wi) + e(u, wi+k−3) ≤ 1 (2)

Now we examine relations between the vertices u and x and the vertices of the cycle C ′.

Claim 4.20. Let l be an integer satisfying 1 ≤ l ≤ k−4. If wi is a neighbour of x in V (C ′),
then
(i) xwi−l /∈ E(G),
(ii) uwi−l ∈ E(G),
(iii) wi−l is not heavy in G,
(iv) wi−lwi+1 ∈ E(G).

Proof. The proof is by induction on l. Clearly, xwi−1, xwi+1 /∈ E(G) to avoid hamiltonian
cycle in G′. Since x is adjacent to wi, it follows from (2) that uwi+k−3 /∈ E(G). Thus, by
(1), u is adjacent to wi−1. Note that uxwiC

′+wi−1u is a hamiltonian cycle in G. Since u
is heavy, Claim 5.3 implies that wi−1 is not heavy. To prove (iv) observe that if wi−1wi+1

is not an edge in G, then {wi; wi−1, x, wi+1} induces a claw. Since neither wi−1 nor x, by
Claim 4.18, is heavy, this contradicts G being a member of the family F(K1, 3, n).

Assume that the Claim holds for the values from the set {1, 2, ..., l} with l satisfying
l < k − 4. We will show that this implies the validity of the claim for l + 1.

Suppose xwi−l−1 ∈ E(G). Then, by the condition (iv) for l, there is a hamiltonian cycle
in G′, namely xwi−l−1C

′−wi+1wi−lC
′+wix. This contradiction proves (i).

By the conditions (i) and (ii) the vertex wi−l is adjacent to u and not adjacent to x. Thus
uwi−l−1 ∈ E(G) to avoid induced path xuwi−lwi−l−1 with neither x nor wi−l being heavy.
This proves (ii). Now, since uwi−l−1 ∈ E(G) and, by (iv), wi−l is adjacent to wi+1, the cycle
uwi−l−1C

′−wi+1wi−lC
′+wixu is a hamiltonian cycle in G. Since u is heavy, Claim 4.6 implies

that wi−l−1 is not heavy.
For the proof of (iv) suppose that wi−l−1 is not adjacent to wi+1. Note that uwi+1 ∈ E(G)

to avoid induced path xuwi−1wi+1 with neither x nor wi−1 being heavy in G. But this implies
that {u; x, wi−l−1, wi+1} induces a claw in G. Since none of the vertices x and wi−l−1 is
heavy, this contradicts G belonging to the family F(K1, 3, n). By mathematical induction
the Claim is true.
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Since G is 2-connected, there is a vertex wi ∈ V (C ′) adjacent to x. From Claim 4.20 it
follows that uxwiwi+1wi−1C

′−wi−k+4u is a cycle in G. Since the length of this cycle is k, this
contradicts the choice of k. This final contradiction completes the proof.
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5 Proof of Theorem 1.27

As usual, we begin with repeating the theorem under consideration.

Theorem 1.27 (WW) Let G be a 2-connected graph with n vertices. If G ∈ F({K1, 3, P7}, n+
1) and

1. n ≥ 14 and G ∈ F(D, n+ 1), or

2. G ∈ F(H, n+ 1) and there is a super-heavy vertex in G,

then G is pancyclic.

Proof of Theorem 1.27: The theorem will be proved by contradiction. Suppose that a
graph G with n vertices satisfies the assumptions of the theorem but is not pancyclic.

Claim 5.1. There is a super-heavy vertex u in G and a vertex v ∈ V (G) \ {u} such that
G− {u, v} is not connected.

Proof. Suppose that G satisfies the first of the assumptions of the theorem, i.e., that G ∈
F(D, n+1) and n ≥ 14. Then it follows from Theorem 1.15 that G is not {K1, 3, P7, D}-free,
and so there is a super-heavy vertex in G, say u. Note that G−u ∈ F({K1, 3, P7, D}, n−1).
If G − u is 2-connected, then it is hamiltonian by Theorem 1.23 and so G is pancyclic by
Lemma 2.1. Hence, there is a vertex v ∈ V (G) \ {u} such that G− {u, v} is not connected.

Now suppose that G satisfies the second one of the assumptions. Let u ∈ V (G) be a
super-heavy vertex in G. As in the previous case, we observe that G − u belongs to the
family F({K1, 3, P7, H}, n− 1) and so it is not 2-connected, by Theorem 1.23 and Lemma
2.1. The claim follows.

Note that G is hamiltonian, by Theorem 1.23 or 1.24. Let C be a hamiltonian cycle in G.
By Claim 5.1 we can choose a super-heavy vertex u ∈ V (G) and a vertex v ∈ V (G)\{u} and
set C = uy1...yh2vxh1 ...x1u, where H1 = {x1, ..., xh1} and H2 = {y1, ..., yh2} are components
of G− {u, v}. Assume, without loss of generality, that h1 ≤ h2.

In the next seven claims we present some pieces of information on the structure of G,
that will be of use throughout the rest of the proof.

Claim 5.2. There are no super-heavy vertices in H1.

Proof. Clearly, the neighbourhood of a vertex x ∈ H1 is a subset of the set (H1−x)∪{u, v}.
Since h1 ≤ (n− 2)/2, it follows that dG(x) ≤ n/2.

Claim 5.3. There are no super-heavy pairs of vertices with distance one or two along a
hamiltonian cycle in G.

Proof. Otherwise G is pancyclic by Lemma 2.3 or Lemma 2.5, a contradiction.

Claim 5.4. NH2 [u] ⊆ NG[y1].
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Proof. Suppose this is not true. Then there is a vertex y ∈ NH2(u) \ NG[y1]. But now
{u; x1, y1, y} induces a claw. Since G belongs to the family F(K1, 3, n + 1) and x1 is not
super-heavy, it follows that y1 is super-heavy. Since dC(u, y1) = 1, this contradicts Claim
5.3.

Claim 5.5. If yiyi+2 /∈ E(G) for some vertices yi, yi+2 ∈ H2, then at least one of them is
not adjacent to u.

Proof. Otherwise {u; x1, yi, yi+2} induces a claw. Since G ∈ F(K1, 3, n + 1) and x1 is not
super-heavy by Claim 5.2, both yi and yi+2 are super-heavy. This contradicts Claim 5.3.

Claim 5.6. NH1 [u] induces a clique in G.

Proof. Since the statement is obvious for h1 = 1 and h1 = 2, assume h1 ≥ 3. Suppose the
claim is not true, i.e. that there exist vertices xa, xb ∈ NH1(u) such that xaxb /∈ E(G). Then
{u; xa, xb, y1} induces a claw. Since neither xa nor xb is super-heavy, by Claim 5.2, this
contradicts G being a member of the family F(K1, 3, n+ 1).

Claim 5.7. NH2(u) 6= H2.

Proof. Otherwise there are both [3, h2 +1]− and [n−h2 +1, n]-cycles in G. If h2 > (n−2)/2,
this implies that G is pancyclic, a contradiction. Since h2 ≥ (n − 2)/2, it follows that
h2 = (n− 2)/2 = h1 and G is missing only the (h2 + 2)-cycle. Now, if u is adjacent to some
vertex xi ∈ H1 other than x1, then uyn−i−h2C

+xiu is a cycle of length h2 +2, a contradiction.
Thus dH1(u) = 1. Since u is super-heavy, this implies that uv is an edge in G. But then
uvC+u is a cycle of length h2 + 2.

We distinguish four cases, depending on the number of vertices in H1 and the number of
neighbours of u in H1.

We begin with a case when h1 = 1. It is showed that under this assumption one can find
an in induced path P7 with five of its vertices being consecutive vertices of the cycle C. This
fact leads to a contradiction with Claim 5.3.

In Subcase 2.1 it is assumed that h1 ≥ 2 and dH1(u) = 1. Using Lemma 2.4 and Claim
5.4 we prove that this implies that there are no one-chords in C, and, in consequence, that
h1 = 3. Then we obtain an induced claw which does not satisfy the Fan’s condition.

The most complex parts of the proof are Subcases 2.2.1 and 2.2.2, where h1 ≥ 2 and
dH1(u) ≥ 2. The idea of the proof is to find a short cycle in G that can be extended by ap-
pending to it all the vertices of G, one-by-one (and thus creating all cycles of greater lengths).
Firstly, the neighbourhood of u in G is examined. Then we prove that the nonneighbours
of u can be used for extending the desired cycle. After the existence of short cycles in G is
proved, we extend the longest of these short cycles using the observations made before and
arrive at the conclusion of pancyclicity of G.

Case 1: h1 = 1.
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Claim 5.8. uv ∈ E(G).

Proof. Suppose the contrary. Then, by Claim 5.4, we have dG(y1) ≥ (n − 1)/2 and so
dG(u) + dG(y1) ≥ n. Lemma 2.4 implies that G is either bipartite or missing (n− 1)-cycles.
Suppose that there are indeed no cycles of length n − 1 in G. This implies in particular
that u is not adjacent to y2. Since y2 is a neighbour of y1, it follows from Claim 5.4 that
dG(y1) ≥ (n + 1)/2, a contradiction with Claim 5.3. Hence, there is a cycle of length n− 1
in G. Since C is a cycle of length n, G is not bipartite. A contradiction.

Recall that NH2 [u] ⊆ NG[y1] by Claim 5.4, implying dG(y1) ≥ (n + 1)/2 − 2 (since u is
super-heavy and both x1 and v are its neighbours) and dG(u) + dG(y1) ≥ n − 1. We will
refer to the latter implicitly in the following.

Claim 5.9. NH2 [u] = NG[y1].

Proof. Suppose that the claim is not true. Then, by Claim 5.4, either there is a vertex
y ∈ H2 adjacent to y1 and not adjacent to u or else vy1 ∈ E(G). In either case it follows that
dG(y1) ≥ (n+ 1)/2− 1 and so dG(u) + dG(y1) ≥ n. Since G is hamiltonian and uC+vu is a
cycle of length n − 1, G is neither bipartite nor missing (n − 1)-cycles. Lemma 2.4 implies
that G is pancyclic, a contradiction.

Claim 5.10. There are [n− 2, n]-cycles in G.

Proof. Obviously, G is hamiltonian and vuC+v is an (n − 1)-cycle. Claim 5.9 implies that
uy2 ∈ E(G) and so uy2C

+vu is a cycle of length n− 2.

By Claim 5.7 we can choose a vertex yk ∈ NH2(u) such that yk+1 ∈ H2 and uyk+1 /∈ E(G).
Choose the minimal possible k for which this property holds. Observe that Claim 5.9 implies
k ≥ 2.

Claim 5.11. h2 ≥ k + 4.

Proof. Suppose the contrary. Then h2 ∈ {k + 1, k + 2, k + 3} and uykC
+vu is a cycle in

G of length at most six. To this cycle all vertices from G can be appended, one-by-one,
creating cycles of all lengths from 6 up to n, namely the cycles uykC

+vx1u, uyk−1ykC
+vx1u,

..., uy2C
+u and C. Clearly, if k ≥ 5, then pancyclicity of G follows from the choice of k.

Assume k ≤ 4. Since n ≤ k+ 6, it follows that n ≤ 10. This implies that G does not satisfy
the first of the assumptions of the theorem, and so G ∈ F(H, n + 1). Note that it follows
from Claim 5.3 that y1 is not super-heavy. Since x1 is also not super-heavy, by Claim 5.2,
the set {u; x1, v; y1, y2} can not induce H. This implies, together with Claim 5.9, that v is
adjacent to y2. But now it is easy to see that there are also [3, 5]-cycles in G, namely the
cycles vx1uv, vuy1y2v and vC+y2v.

Claim 5.12. uyk+2 /∈ E(G).
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Proof. Suppose that the statement is not true. Then uyk+2 ∈ E(G), implying, by Claim 5.5,
that ykyk+2 ∈ E(G). Consider G′ = G− yk+1, a graph with the cycle C ′ = uy1C

+ykyk+2C
+u

being its hamiltonian cycle. Since uyk+1 /∈ E(G) it follows from Claim 5.9 that y1yk+1 /∈ E(G)
and so

dG′(u) + dG′(y1) = dG(u) + dG(y1) ≥ n− 1 = |G′|.

This implies, together with the fact that uC ′+vu is an (|G′| − 1)-cycle in G′, that G′ is
pancyclic, by Lemma 2.4. But then G is also pancyclic, a contradiction.

Claim 5.13. ykyk+2, ykyk+3, yk+1yk+3 /∈ E(G).

Proof. This is indeed true, since if any of these edges exists, say yaya+i, Lemma 2.9 for u,
y1, X = {ya+1, ya+i−1} and a hamiltonian cycle yaya+iC

+ya in G − X implies pancyclicity
of G.

Claim 5.14. uyk+3 /∈ E(G).

Proof. Suppose that the statement is not true. Then it follows from Claim 5.13 that
{u; x1, yk, yk+3} induces a claw. Since G ∈ F(K1, 3, n + 1) and x1 is not super-heavy,
by Claim 5.2, both yk and yk+3 are super-heavy. But then G is pancyclic by Lemma 2.8 and
Claim 5.13, a contradiction.

Claim 5.15. ykyk+4, yk+1yk+4, yk+2yk+4 /∈ E(G).

Proof. See proof of Claim 5.13 (which can now be applied here due to the Claim 5.14).

Claim 5.16. uyk+4 /∈ E(G).

Proof. Suppose that the claim is not true. Then it follows from Claim 5.9 that y1yk+4 ∈ E(G)
and from Claim 5.15 that {u; x1, yk, yk+4} induces a claw. Since G ∈ F(K1, 3, n + 1) and
x1 is not super-heavy by Claim 5.2, yk is super-heavy.
ConsiderG′ = G−{yk+1, yk+2, yk+3} with a hamiltonian cycle y1C

+ykuC
−yk+4y1. By Claims

5.12, 5.13, 5.14 and 5.15 and the fact that yk is super-heavy we have

dG′(u) + dG′(yk) = dG(u) + dG(yk)− 1 ≥ |G′|+ 1.

Hence, G′ is pancyclic by Lemma 2.3 and so there are [3, n− 2]-cycles in G. Together with
Claim 5.10 this implies pancyclicity of G, a contradiction.

Claims 5.12, 5.13, 5.14, 5.15 and 5.16 imply that the path x1uykyk+1yk+2yk+3yk+4 is an
induced one. Since G belongs to the family F(P7, n+ 1), it follows that at least two of the
vertices yk+1, yk+2, yk+3 and yk+4 are super-heavy. Claim 5.3 implies that from these four
vertices only yk+1 and yk+4 are super-heavy. But now the pancyclicity of G follows from
Lemma 2.8 and Claim 5.10. This contradiction completes the proof of this case.

Case 2: h1 ≥ 2.
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Subcase 2.1: dH1(u) = 1.

In this subcase the only neighbour of u in H1 is x1. As in the Case 1, Claim 5.4 implies
that dG(y1) ≥ (n+1)/2−2 and so dG(u)+dG(y1) ≥ n−1. Again, this fact will be implicitly
referred to in the following.

Claim 5.17. uv ∈ E(G).

Proof. Suppose the contrary. Then, by Claim 5.4, we have dG(y1) ≥ (n − 1)/2 and so
dG(u) + dG(y1) ≥ n. Lemma 2.4 implies that G is either bipartite or missing (n− 1)-cycles.
Suppose that there are indeed no cycles of length n − 1 in G. This implies in particular
that u is not adjacent to y2. Since y2 is a neighbour of y1, it follows from Claim 5.4 that
dG(y1) ≥ (n + 1)/2, a contradiction with Claim 5.3. Hence, there is a cycle of length n− 1
in G. Since C is a cycle of length n, G is not bipartite. A contradiction.

Claim 5.18. Suppose xixi+2 ∈ E(G) for some xi, xi+2 ∈ H1. Then the only possible one-
chords in C other than xixi+2 are xi−1xi+1 and xi+1xi+3.

Proof. Suppose that the claim is not true. Then there is a one-chord in C other than xi−1xi+1

and xi+1xi+3. Consider G′ = G−xi+1. Clearly, C ′ = uy1C
+xixi+2C

+u is a hamiltonian cycle
in G′ with

dG′(u) + dG′(y1) = dG(u) + dG(y1) ≥ |G′|.

Since the one-chord of C is also a one-chord in C ′, there is an (|G′| − 1)-cycle in G′. Thus
G′ is not bipartite. Hence, G′ is pancyclic by Lemma 2.4, implying pancyclicity of G: a
contradiction.

Claim 5.19. Suppose xixi+3 ∈ E(G) for some xi, xi+3 ∈ H1. Then there are no one-chords
in C.

Proof. Otherwise there is a one-chord in C. Let G′ = G − {xi+1, xi+2}. Clearly, the cycle
uy1C

+xixi+3C
+u is a hamiltonian cycle in G′. Since

dG′(u) + dG′(y1) = dG(u) + dG(y1) ≥ |G′|+ 1,

Lemma 2.3 implies, that G′ is pancyclic. Thus there are [3, n − 2]-cycles in G. Since the
one-chord in C creates a cycle of length n − 1 and G is hamiltonian, G is pancyclic. A
contradiction.

Claim 5.20. If there is a one-chord in C[u, v], then there are no one-chords and no two-
chords in C[xh1 , x1].

Proof. This Claim is a corollary of Claim 5.18 and Claim 5.19.

Claim 5.21. Suppose there is a one-chord in C[u, v]. Then h1 ≤ 3.
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Proof. Suppose the statement is not true. Then there is a one-chord in C[u, v] and h1 ≥
4. Recall that yk ∈ NH2(u) is such a vertex that yk+1 ∈ H2 and uyk+1 /∈ E(G). Since
NH1(u) = {x1}, Claim 5.20 implies, that {x4, x3, x2, x1, u, yk, yk+1} induces a P7. Since
neither x4 nor x2 are super-heavy, by Claim 5.2, this contradicts G belonging to the family
F(P7, n+ 1).

Claim 5.22. There are no one-chords in C[u, v].

Proof. Suppose that the claim is not true. Then there is a one-chord in C[u, v] and so
h1 ≤ 3, by Claim 5.21.

First assume h1 = 2. Consider G′ = G − {x1, x2}. By Claim 5.17 C ′ = uy1C
+vu is a

hamiltonian cycle in G′. Since the one-chord in C[u, v] is also a one-chord in C ′, there is a
cycle of length |G′| − 1 in G′. Furthermore, we have

dG′(u) + dG′(y1) = dG(u)− 1 + dG(y1) ≥ |G′|,

and so G′ is pancyclic by Lemma 2.4. This implies pancyclicity of G, a contradiction.
Now let h1 = 3. Let G′ = G−{x1, x2, x3}. Note that the cycle uy1C

+vu is a hamiltonian
cycle in G′. Since

dG′(u) + dG′(y1) = dG(u)− 1 + dG(y1) ≥ |G′|+ 1,

G′ is pancyclic by Lemma 2.3. Hence, there are [3, n − 3]-cycles in G. Since there is a
one-chord in C[u, v], G contains also [n− 1, n]-cycles. It follows that there are no cycles of
length n − 2 in G, since we assumed that G is not pancyclic. Then obviously vx1 /∈ E(G).
But now, in order to avoid {u; , x1, v, y1} inducing a claw with neither x1 nor y1 being
super-heavy, vy1 ∈ E(G). This implies, by Claim 5.4, that dG(y1) ≥ (n + 1)/2 − 2 + 1 and
so dG(u) + dG(y1) ≥ n. Since there is an (n− 1)-cycle in G, G is pancyclic by Lemma 2.4, a
contradiction.

Now it follows from Claim 5.5 and Claim 5.22 that from every four consecutive vertices
of H2 at most two of them can be adjacent to u. One can easily verify that for every possible
rest obtained from dividing h2 by 4 it follows that dH2(u) ≤ bh2/2c+ 1 ≤ h2/2 + 1. Hence,
dG(u) ≤ h2/2 + 3. If h1 ≥ 4, then h2 ≤ n− 6 and we get dG(u) ≤ n/2, a contradiction with
u being super-heavy. Hence, h1 ∈ {2, 3}.

Claim 5.23. There are no one-chords in C. Furthermore, v is adjacent to x1.

Proof. Note that uy2 /∈ E(G), by claim 5.22. Since y1y2 ∈ E(G), it follows from Claim 5.4
that dG(y1) ≥ (n + 1)/2 − 2 + 1, and so dG(u) + dG(y1) ≥ n. Now, if y1 is adjacent to v,
then the sum of the degrees of u and y1 is strictly greater than n and so G is pancyclic by
Lemma 1.4. Similarly, if there is a one-chord in C, then the pancyclicity of G follows from
Lemma 2.4. Thus vy1 /∈ E(G) and there are no one-chord in C.

To show that the second part of the claim is true, suppose the contrary, i.e., suppose that
vx1 /∈ E(G). Then {u; v, x1, y1} induces a claw. Since neither x1 nor y1 is super-heavy, this
contradicts G belonging to the family F(K1, 3, n+ 1). Hence, vx1 ∈ E(G).
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Claim 5.23 implies that h1 6= 2. Thus h1 = 3. Since there are no one-chords in C and
vx1 is an edge in G, it follows that {v; x1, x3, yh2} induces a claw. By Claim 5.2 none of
the vertices x1 and x3 is super-heavy. This contradicts G being a member of the family
F(K1, 3, n+ 1) and completes the proof of this subcase.

Subcase 2.2: dH1(u) ≥ 2.

Before the proof splits further into subcases, it will be shown that G does not satisfy
the second of the assumptions of the theorem. Suppose the contrary, i.e., suppose that
G ∈ F(H, n+ 1). From the assumptions of this subcase and from Claim 5.6 it follows that
there is a triangle uxaxbu in G for some xa, xb ∈ H1. If u is adjacent to some vertex y ∈ H2

other than y1, then, by Claim 5.4, {u; xa, xb; y1, y} induces an H. Since G ∈ F(H, n + 1)
and neither xa nor xb is super-heavy (by Claim 5.2), y1 is super-heavy. But then {u, y1} is
a super-heavy pair of vertices, in contradiction to Claim 5.3.

Thus assume NH2(u) = {y1}. Since u is super-heavy and can be adjacent to at most
y1, v and all vertices of H1, it follows that (n + 1)/2 ≤ dG(u) ≤ h1 + 2. This, together
with the choice of h1, implies (n− 3)/2 ≤ h1 ≤ (n− 2)/2. Whether n is even and equal to
2k or odd, and equal to 2k + 1, we get h1 = k − 1. In order for u to be super-heavy, its
neighbourhood must be NG(u) = H1 ∪ {y1, v}, implying the existence of [3, h1 + 2]-cycles
in G, which can be rewritten as [3, k+ 1] cycles. Note that C ′ = uC+vu is a cycle of length
n−h1 = n− k+ 1 ≤ k+ 2. By appending neighbours of u along the orientation of the cycle
C to C ′, we obtain [k + 2, n]-cycles. Hence G is pancyclic, a contradiction.

This final contradiction proves that G does not belong to the family F(H, n + 1). For
the rest of the proof we thus assume that G ∈ F(D, n+ 1) and that n ≥ 14.

Subcase 2.2.1: h1 > dH1(u) ≥ 2.

The idea of the proof of this subcase is to find a short cycle in G that can be extended
by appending to it all the vertices of G, one-by-one (and thus creating all cycles of greater
lengths). Firstly, the neighbourhood of u in G is examined. Then we prove that the non-
neighbours of u can be used for extending the desired cycle. After the existence of short
cycles in G is proved, we extend the longest of these short cycles using the observations made
before and arrive at the conclusion of pancyclicity of G.

Note that the assumptions of this subcase imply h1 ≥ 3. Let xi ∈ NH1(u) be a vertex
such that xi+1 ∈ H1 and uxi+1 /∈ E(G).

Claim 5.24. Suppose that u is adjacent to a super-heavy vertex yj ∈ H2. If j < h2, then
every vertex from the set {yj+1, ..., yh2} is adjacent to yj and not adjacent to y1.

Proof. Clearly, yj+1 is adjacent to yj. To show that it is not adjacent to y1, suppose the the
contrary, i.e., suppose y1yj+1 ∈ E(G). Then y1yj+1C

+uyjC
−y1 is a hamiltonian cycle in G

with dG(u) + dG(yj) ≥ n+ 1. Lemma 2.3 implies that G is pancyclic, a contradiction.
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Assume {yj+1, ..., yj+m} ⊂ NG[yj] and {yj+1, ..., yj+m}∩NG(y1) = ∅ for somem satisfying
j +m < h2. We will show that this implies yjyj+m+1 ∈ E(G) and y1yj+m+1 /∈ E(G).

Suppose that y1 is adjacent to yj+m+1. Consider G′ = G − {yj+1, ..., yj+m}. Clearly,
|G′| = n − m and y1yj+m+1C

+uyjC
−y1 is a hamiltonian cycle in G′. Since none of the

vertices removed from G in order to obtain G′ is adjacent to y1, it follows from Claim 5.4
that none of them is adjacent to u. Hence,

dG′(u) + dG′(yj) = dG(u) + dG(yj)−m ≥ |G′|+ 1,

and so G′ is pancyclic by Lemma 2.3, implying that there are [3, n −m]-cycles in G. Note
that the cycle yjyj+mC

+yj of length n − m + 1 can be extended to the (n − m + 2)-cycle
yjyj+m−1yj+mC

+yj. Appending vertices yj+m−2, ..., , yj+1 to this cycle, one-by-one, in the
similar manner, gives [n−m+ 3, n]-cycles. It follows that G is pancyclic, a contradiction.

Hence, yj+m+1 is not adjacent to y1 and so, by Claim 5.4, uyj+m+1 /∈ E(G). Now suppose
that yj+m+1 is not adjacent to yj. Then the set {y1, u, yj; xi, xi+1; yj+m, yj+m+1} induces a
deer in G. Since G ∈ F(D, n + 1) and, by Claim 5.2, xi is not super-heavy, it follows that
y1 is super-heavy. But then {u, y1} is a super-heavy pair of vertices, a contradiction with
Claim 5.3. Thus yjyj+m+1 ∈ E(G). By mathematical induction the claim follows.

Claim 5.25. NH2 [u] induces a clique and at most one of the neighbours of u in H2 is super-
heavy.

Proof. Note that it follows from Claim 5.24 and Claim 5.4 that if u is adjacent to some
super-heavy vertex yj ∈ H2 − yh2 , then {yj+1, ..., yh2} ∩ NG(u) = ∅. Suppose that there
are two super-heavy neighbours of u in H2, say yj and ym, where j < m. Then obviously
ym ∈ {yj+1, ..., yh2}, a contradiction.
Now suppose that the first part of the claim is not true. Then there are two neighbours of
u, say ya and yb, such that yayb /∈ E(G). But then {u; x1, ya, yb} induces a claw. Since
x1 is not super-heavy by Claim 5.2 and at most one vertex from the pair {ya, yb} can be
super-heavy, this contradicts G being a member of the family F(K1, 3, n+ 1).

Claim 5.26. There are [3, 6]-cycles in G.

Proof. Since n ≥ 14 and u is super-heavy, dG(u) ≥ 8. Hence, u has at least four neighbours
either in H1 or else in H2. Both NH1 [u] and NH2 [u] induce cliques, by Claim 5.6 and Claim
5.25, respectively, implying that there is an induced clique on at least five vertices in G.
Thus there are [3, 5]-cycles in G.

Suppose that G is missing cycles of length six. Claims 5.6 and 5.25 imply that dH1(u) ≤ 4
and dH2(u) ≤ 4. Let yj be the neighbour of u in H2 with a highest index values. It will be
first showed that dH2(u) < 4.

To do this, assume the contrary. Note that if there is a super-heavy vertex y ∈ H2 that
is not adjacent to u, then |NH2(u) ∩ NH2(y)| ≥ 2. Then u, y and four neighbours of u in
H2 form a cycle C6. Thus assume that every super-heavy vertex of H2 is a neighbour of u.
It follows from Claim 5.2 and Claim 5.25 that the set of all super-heavy vertices of G is a
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subset of the set {u, v, yj}. Observe that if v is not super-heavy, then it follows from the
fact that G ∈ F({K1, 3, P7, D}, n+ 1) and uyj ∈ E(G) that G is in fact {K1, 3, P7, D}-free,
in contradiction with the assumptions. Thus v is super-heavy.

Now suppose that v is not adjacent to u. Since both these vertices are super-heavy,
they have at least three common neighbours in G. If they share at least two neighbours
in H2, we obtain a cycle C6, by Claim 5.25. Thus |NH2(u) ∩ NH2(v)| ≤ 1, implying that
|NH1(u) ∩ NH1(v)| ≥ 2. If dH1(u) ≥ 4, then one can create a cycle of length six using u, v
and four neighbours of u from H1, by Claim 5.6. Thus dH1(u) ≤ 3. But then dG(u) ≤ 7, in
contradiction with u being super-heavy and n ≥ 14.

Hence, uv ∈ E(G). Note that u and v have no common neighbours in H2, since otherwise
a cycle of length six can be created using u, v and four neighbours of u from H2. Since both
u and v are super-heavy, it follows that |NH1(u) ∩ NH1(v)| ≥ 2. Let x and x′ be common
neighbours of u and v in H1. If yj is adjacent to yh2 , then uyjyh2vxx

′u is a cycle of length
six. Hence, yjyh2 /∈ E(G). Thus yj is not super-heavy, either by Claim 5.24 (if j < h2) or
else by Claim 5.3 and the fact that v is super-heavy. Hence, the only super-heavy vertices in
G are u and v. Since they are adjacent and G ∈ F({K1, 3, P7, D}, n+ 1), this implies that
G is {K1, 3, P7, D}-free. A contradiction.

The reasoning conducted in the previous three paragraphs proves that dH2(u) < 4. From
the inequalities dG(u) ≥ 8 and dH1(u) ≤ 4 it follows that dH1(u) = 4, dH2(u) = 3 and u is
adjacent to v. Note that if NH1(u) ∩ NH1(v) 6= ∅, then the existence of a cycle of length
six follows from Claim 5.6 (i.e., a cycle of length six can be constructed using u, v and the
four neighbours of u in H1). Hence, u and v have no common neighbours in H1. Let y1, yk

and yj be the neighbours of u in H2 with 1 < k < j. By Claim 5.24 neither y1 nor yk is
super-heavy. Thus, to avoid induced claws {u; x1, y1, v} and {u; x1, yk, v}, the vertex v is
adjacent to both y1 and yk. Now, if there is a super-heavy vertex in H2 that is not adjacent
to u, say y, then it is adjacent to at least two neighbours of u in H2∪{v}. Using u, v, y and
the neighbours of u in H2 we can then create a cycle of length six, a contradiction. It follows
that the set of all super-heavy vertices of G is a subset of the set {u, v, yj}. Note that if
any of the vertices v and yj was not super heavy, then, since both of them are adjacent to u,
from the assumption of G being a member of the family F({K1, 3, P7, D}, n+ 1) it follows
that G is in fact {K1, 3, P7, D}-free. A contradiction. Hence, both yj and v are super heavy.
This implies that j < h2, by Lemma 2.3, and so yjyh2 ∈ E(G), by Claim 5.24. But now
uy1ykyjyh2vu is a cycle of length six in G. This final contradiction completes the proof of
Claim 5.26.

Claim 5.27. Let A = {xa+1, ..., xa+p} ⊂ H1 be a maximal set of consecutive non-neighbours
of u in H1 (i.e., xa ∈ NH1(u) and either xa+p+1 ∈ NH1(u) or else xa+p+1 = v). Then
A ⊂ NG(xa).

Proof. Since the statement is obvious for p = 1, assume p ≥ 2. Suppose that the claim is
not true. Then there is a vertex xa+j ∈ A adjacent to xa such that 1 < j < p − 1 and
xaxa+j+1 /∈ E(G). We divide the proof of this claim into three subclaims.
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Claim 6.27.1. Let B = {yb+1, ..., yb+q} ⊂ H2 be a maximal set of consecutive non-
neighbours of u in H2 (i.e., yb ∈ NH2(u) and either yb+q+1 ∈ NH2(u) or else yb+q+1 = v).
Then B ⊂ NG(yb).

Proof. Again, assume q ≥ 2, since the statement is obviously true for q = 1, and suppose it
is not true. Then there are vertices yb+l, yb+l+1 ∈ B such that ybyb+l ∈ E(G) and ybyb+l+1 /∈
E(G). But now {xa+j+1, xa+j, xa, u, yb, yb+l, yb+l+1} induces P7. Since neither xa+j+1 nor
xa is super-heavy, this contradicts G belonging to the family F(P7, n+ 1).

Claim 6.27.2. dH1(u, xh1) = 3.

Proof. Suppose the statement is not true. First assume dH1(u, xh1) ≥ 4. Then there is an
induced path P5 in H1 connecting u with xh1 , say uxx′x′′xh1 . Recall that yk ∈ NH2(u) is a
vertex such that yk+1 ∈ H2 and uyk+1 /∈ E(G). It follows that {xh1 , x

′′, x′, x, u, yk, yk+1}
induces a P7, a contradiction with G being a member of the family F(P7, n+ 1) (by Claim
5.2).

Now assume dH1(u, xh1) ≤ 2. First we note that whether or not u is adjacent to xh1 ,
there is a vertex x ∈ H1 such that uxxh1 is a path P3 (not necessarily an induced one). It is
obviously true when uxh1 /∈ E(G); if the opposite is true, it follows from Claim 5.6 and the
fact that dH1(u) ≥ 2.

Furthermore, the same is true for yh2 : whether or not this vertex is adjacent to u, there
is y ∈ H2 such that uyyh2 is a path P3. If uyh2 ∈ E(G), it follows from Claim 5.25 for y = y1.
Otherwise it is a corollary from the Claim 6.27.1.

Hence, uyyh2vxh1xu is a cycle of length six. Since neighbours of u in H2 induce a clique,
by Claim 5.25, they can be appended to this cycle one-by-one between u and y, creating at
least [6, dH2(u) + 4]-cycles. Consider the longest cycle of those just obtained. By Claim 5.6,
the neighbours of u from H1 can be added to this cycle in a similar manner. Finally the
vertices from the gaps between the neighbours of u in C[y1, yh2 ] can be appended to this
cycle (again, one-by-one), due to the Claim 6.27.1. In this way we obtain [6, h2 +dH1(u)+2]-
cycles.
Note that uyyh2C

+u is a cycle of length n − h2 + 2. To this cycle we also can append all
vertices from H2, in the way described above, thus obtaining [n − h2 + 2, n]-cycles. Since
G is not pancyclic and it contains [3, 6]- (by Claim 5.25) and [6, h2 + dH1(u) + 2]-cycles, it
must be

h2 + dH1(u) + 2 < n− h2 + 2 = h1 + 4 ≤ h2 + 4,

implying dH1(u) < 2. This contradicts the assumptions of this subcase. The claim follows.

Claim 6.27.3. There are vertices y ∈ H2 and x, x′ ∈ H1 such that uyyh2vxh1x
′xu is a cycle

in G.

Proof. Clearly, since dH1(u, xh1) = 3, there are vertices x, x′ ∈ H1 such that uxx′xh1 is a
path P4. Now, if uyh2 ∈ E(G), then, by Claim 5.25, there is a path uy1yh2 and we can set
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y = y1. Otherwise let y be the last (i.e. with the highest index) neighbour of u in H2. It is
adjacent to yh2 by Claim 6.27.1, and so uyyh2vxh1x

′xu is a demanded cycle.

By Claims 5.26 and 6.27.3 there are [3, 7]-cycles in G. Consider now the cycle C ′ =
uyyh2vxh1x

′xu. We can extend C ′ by appending to it, one-by-one, vertices from NH2(u) (by
Claim 5.25), then the remaining vertices from H2 (by Claim 6.27.1) and finally all neighbours
of u from H1 (by Claim 5.6). In this way we obtain [7, h2 + dH1(u) + 4]-cycles.
Note that uyyh2C

+u is a cycle of length h1 +4. This cycle also can be extended with vertices
from NH2(u) and then the remaining vertices from H2. This procedure gives [h1 + 4, n]-
cycles.
Since G is not pancyclic, it must be h2 + dH1(u) + 4 < h1 + 4. But by the choice of h1 we
have also h1 ≤ h2. These inequalities imply that dH1(u) < 0, an obvious contradiction.

Claim 5.28. Let A = {ya+1, ..., ya+p} be a set of consecutive non-neighbours of u in H2 such
that uya ∈ E(G) and yaya+p+1 ∈ E(G) (where we assume yh2+1 = v). Let P = v1v2...vm

be a path with m ≥ 3, v1 = ya, vm = ya+p+1 and vi ∈ A for i = 2, ..., m − 1. Finally, let
C ′ be a cycle of length q in G such that u, v ∈ V (C ′), C ′[v, u] = {v, xh1 , xh1−1, ..., x1, u},
A ∩ V (C ′) = ∅ and yaya+p+1 is an edge of C ′.
Then one can obtain [q + 1, q + m − 2]-cycles by appending some of the vertices from the
path P to the cycle C ′ and omitting at most one vertex from V (C ′).

Proof. If ya is super-heavy, it is adjacent to every vertex from A, by Claim 5.24, and so the
statement follows. Now assume that ya is not super-heavy.

First we show that there is a vertex in V (C ′) the omitting of which along C ′ results in
a cycle of length q − 1. Clearly, if ux2 ∈ E(G), then x1 is such a vertex (namely, the cycle
of length q − 1 is x2uC

′+x2). If ux2 /∈ E(G), then x1x3 ∈ E(G) (it follows from Claim 5.6 if
ux3 ∈ E(G), or from Claim 5.27 if ux3 /∈ E(G)) and the vertex that can be omitted is x2.

The proof is by induction with respect to m. For m = 3 we need to point out only a cycle
of length q+1. Obviously, uC ′+yav2ya+p+1C

′+u is such a cycle. For the case when m = 4 we
want to find cycles of lengths q + 1 and q + 2. The previous is uC ′+yav2v3ya+p+1C

′+x̂C ′+u

(where x̂ stands for omitting either x1 or else x2) and the latter is uC ′+yav2v3ya+p+1C
′+u.

Now assume the statement is true for some fixed m ≥ 4, as well as for m− 1. Consider a
path P = v1...vm+1 satisfying the assumptions. In order to avoid {xi+1, xi, u, ya, v2, v3, v4}
inducing a P7 with neither xi nor ya being super-heavy, there must be one of the edges yav3,
yav4 or v2v4.

If yav3 ∈ E(G) (or v2v4 ∈ E(G)), P ′ = yav3P
+ya+p+1 (or P ′ = yav2v4P

+ya+p+1) is a
path on m vertices that allows us to obtain [q + 1, q + m − 2]-cycles. In order to obtain
a cycle of length q + m − 1, we simply append all vertices from P to C ′ (i.e., this cycle is
uC ′+yav2...vmya+p+1C

′+u).
If there is an edge yav4, it creates a path P ′ = yav4P

+ya+p+1 onm−1 vertices, and so there
are [q+1, q+m−3]-cycles. To obtain a cycle of length q+m−1, simply append all vertices
from P to C ′. Finally, omitting x1 or x2 in this last cycle creates a (q +m− 2)-cycle.
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So far we know the structure of u neighbourhoods in H1 and H2 and the parts of the
cycle C that lie between u’s neighbours. To describe the remaining part of C, let yj denote
the last (i.e. the one with the highest index) neighbour of u in H2.

Claim 5.29. yj 6= yh2 and yjyh2 /∈ E(G).

Proof. Suppose that the statement is not true. Then, by Claim 5.27 and the fact that
dH1(u) ≥ 2, there is a cycle uyh2vxh1xu (if yj = yh2) of length five or a cycle uyjyh2vxh1xu (if
yjyh2 ∈ E(G)) of length six. Since neighbours of u in H1 induce a clique, by Claim 5.6, they
can be appended to this cycle, one-by-one. Then the same can be done with the remaining
vertices from H1, by Claim 5.27, and subsequently with neighbours of u from H2, as they
also induce a clique, by Claim 5.25.

In this manner we obtain at least [6, h1 +dH2(u)+2]-cycles, the longest of which contains
all vertices from G but the non-neighbours of u in H2. Denote this longest cycle C ′. These
remaining vertices can be divided into disjoint maximal sets of consecutive non-neighbours
of u along C. Applying Claim 5.28 to C ′ with the first of these sets as A (where the path P
from Claim 5.28 consists of all vertices from A), gives a cycle C ′′ with V (C ′′) = V (C ′) ∪ A,
and every cycle shorter than C ′′. Applying Claim 5.28 to C ′′ and the remaining sets of non-
neighbours of u, one-by-one, we finally arrive at the cycle C. Since this procedure guarantees
creating cycles of all lengths from h1 + dH2(u) + 2 up to n, there are [6, n]-cycles in G. Since
there are also [3, 5]-cycles, by Claim 5.26, G is pancyclic, a contradiction.

Note that if yj was super-heavy, it would be adjacent to yh2 by Claim 5.24. Hence it
follows from Claim 5.29 that yj is not super-heavy.

Claim 5.30. Let ym be the last neighbour (i.e., with the highest index) of yj in C[yj, yh2 ].
Then ymy ∈ E(G) for y ∈ {ym+1, ..., yh2}.

Proof. Note that m ≤ h2 − 1 by Claim 5.29. Since the statement is obvious for m =
h2 − 1, assume m ≤ h2 − 2. Suppose that the claim is not true. Then there is some
vertex yb ∈ {ym+1, ..., yh2−1} such that ybym ∈ E(G) and ymyb+1 /∈ E(G). But then
{xi+1, xi, u, yj, ym, yb, yb+1} induces a P7 with neither xi nor yj being super-heavy. A
contradiction.

Now it follows from Claims 5.27, 5.29 and 5.30 and the fact that dH1(u) ≥ 2 that there
is a cycle C ′ = uyjymyh2vxh1xu, where x is the neighbour of u in H1 with the highest index
if uxh1 /∈ E(G) and x = x1 otherwise. To this cycle C7 we can append neighbours of u,
one-by-one, by Claim 5.6 and Claim 5.25 and then the non-neighbours of u from H1, by
Claim 5.27. Vertices from the set {ym+1, ..., yh2−1} can then be added to the cycle due to
Claim 5.30. Finally, Claim 5.28 allows us to extend the longest of just created cycles using
the non-neighbours of u in H2 (just like in the proof of Claim 5.29) up to the hamiltonian
cycle C. Hence, there are [7, n]-cycles in G. Together with Claim 5.26 this implies that G
is pancyclic. This contradiction completes the proof of this subcase.
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Subcase 2.2.2: h1 ≥ 2, dH1(u) = h1.

The idea of the proof in this subcase is the same as in the previous one. The neigh-
bourhood of u in G is firstly examined. Then we focus on the parts of the cycle C that lie
between the neighbours of u (i.e., the parts in which u has no neighbours) and show that the
vertices lying on these parts can be used to extend some cycles. The next step is to prove
the existence of short cycles in G. Finally, we choose a specific short cycle of G, and using
the previous observation extend it by appending all vertices of G to it, one-by-one, up to
the cycle C.

Claim 5.31. None of the neighbours of u in H2 is super-heavy.

Proof. Assume the contrary. Then u is adjacent to some super-heavy vertex yj ∈ H2.
Note that j ≥ 3, by Claim 5.3, yj−1yj+1 /∈ E(G), by Lemma 2.1, and y1yj ∈ E(G), by
Claim 5.4. Furthermore, it must be y1yj+1 /∈ E(G) (where we assume yh2+1 = v), since
otherwise C ′ = y1yj+1C

+uyjC
−y1 would be a hamiltonian cycle in G with dC′(u, yj) = 1

and dG(u) + dG(yj) ≥ n+ 1, and thus G would be pancyclic by Lemma 2.3.
Claim 5.3 implies that neither yj−1 nor yj+1 is super-heavy. Since G ∈ F(K1, 3, n+ 1), it

follows that {yj; u, yj−1, yj+1} cannot induce a claw. Hence, u is adjacent to yj−1 or yj+1.
Suppose uyj+1 ∈ E(G). Since y1yj+1 /∈ E(G), Claim 5.4 implies that yj+1 /∈ H2 and so

j = h2 and yj+1 = v. Consider G′ = G − H1. G′ is obviously hamiltonian with the cycle
C ′ = yjvuC

+yj being its hamiltonian cycle. Since

dG′(u) + dG′(yj) ≥ (n+ 1)/2− h1 + (n+ 1)/2 ≥ |G′|+ 1,

G′ is pancyclic by Lemma 2.5. Appending vertices from H1 to C ′, one-by-one, creates
cycles of all lengths greater than |G′| and so G is also pancyclic, a contradiction. Hence,
uyj+1 /∈ E(G) and uyj−1 ∈ E(G).

Suppose that uv /∈ E(G). Consider G′ = G− {x1, ..., xh1−1}, a hamiltonian graph with
a hamiltonian cycle C ′ = y1yjC

+xh1uyj−1C
−y1. First it will be shown that G′ is pancyclic.

Indeed, if uy2 /∈ E(G), then y2 ∈ NG(y1) \NG(u) and Claim 5.4 together with the fact that
uv /∈ E(G) imply dG(y1) ≥ (n + 1)/2 − h1 + 1. Hence, dG′(y1) + dG′(yj) ≥ |G′| + 1, and
pancyclicity of G′ follows by Lemma 2.3. If uy2 ∈ E(G), then a similar argument leads to the
inequality dG′(y1)+dG′(yj) ≥ |G′|. This inequality together with the cycle uy2C

′+u of length
|G′| − 1 implies that G′ is pancyclic by Lemma 2.4. It follows that there are [3, |G′|]-cycles
in G. Since the vertices from H1 can be appended to the cycle C ′ one-by-one, thus creating
[|G′|, n]-cycles, G is pancyclic, a contradiction.

Hence, uv ∈ E(G). ConsiderG′ = G−H1 with a Hamilton cycle C ′ = y1yjC
+vuyj−1C

−y1.
Again, depending on wether or not u is adjacent to y2, we have dG(y1) ≥ (n+ 1)/2− h1 − 1
(if it is) or dG(y1) ≥ (n+ 1)/2− h1. In the previous case uy2C

′+u is a (|G′| − 1)-cycle in G′

and the inequality dG′(y1) + dG′(yj) ≥ |G′| holds, implying that G′ is pancyclic by Lemma
2.4. In the latter case we have dG′(y1) + dG′(yj) ≥ |G′|+ 1 and so G′ is pancyclic by Lemma
2.3. Again, pancyclicity of G′ implies pancyclicity of G, since the vertices from H1 can be
appendend to C ′ one-by-one. Thus G is pancyclic, a contradiction.
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Claim 5.32. NH2 [u] induces a clique in G.

Proof. Suppose the claim is not true, i.e. that there are vertices ya, yb ∈ NH2(u) such that
yayb /∈ E(G). Then {u; ya, yb, x1} induces a claw. Since neither ya nor yb is super-heavy, by
Claim 5.31, this contradicts G being a member of the family F(K1, 3, n+ 1).

Claim 5.33. There are [3, 5]-cycles in G.

Proof. Since u is super-heavy and n ≥ 14, we have dG(u) ≥ 8. Hence, u has at least four
neighbours in H1 or H2. Both NH1 [u] and NH2 [u] are complete subgraphs of G, by Claim
5.6 and 5.32, respectively, and so the claim follows.

Claim 5.34. Let A = {ya+1, ..., ya+p} be a set of consecutive non-neighbours of u in H2

such that uya ∈ E(G) and yaya+p+1 ∈ E(G) (where we assume yh2+1 = v). Let C ′ =
uC+yaya+p+1C

+u be a cycle of length q = n − p. Finally, let P = v1v2...vm be a path with
m ≥ 3, v1 = ya, vm = ya+p+1 and vi ∈ A for i = 2, ..., m− 1.

Then one can obtain [q+ 1, q+m− 2]-cycles by appending some of the vertices from the
path P to the cycle C ′ and omitting at most two neighbours of u belonging to V (C ′).

Proof. The proof is by induction on m. For the case when m = 3 we only need to point out
a cycle of length q + 1. It is easy to see that yav2ya+p+1C

′+ya is such a cycle.
Assumem = 4. By the assumptions of this subcase u is adjacent to x2 and so yav2v3ya+p+1

C ′+x2uC
′+ya is a cycle of length q + 1. Append x2 to this cycle in order to obtain a cycle

with q + 2 vertices.
Now let m = 5. Clearly, the cycle C ′′ = yav2v3v4ya+p+1C

′+ya has length q + 3. Using
the edge ux2 to omit vertex x1 we obtain a cycle of length q + 2. If h1 ≥ 3, then the
chord ux3 in the cycle C ′′ creates a cycle of length q + 1. Otherwise h1 = 2. Now, if u is
adjacent to v, then the edge uv is a two-chord in C ′′, and so there is a (q + 1)-cycle in G.
If uv /∈ E(G) and uy2 /∈ E(G), it follows from Claim 5.4 that dG(y1) ≥ (n + 1)/2 − 1 and
so dG(u) + dG(y1) ≥ n. Since the existence of a cycle of length n − 1 in G follows from
the assumptions of this subcase, this contradicts Lemma 2.4. Finally, if uv /∈ E(G) and
uy2 ∈ E(G), then uy2C

′+yav2v3v4ya+p+1C
′+x2u is a cycle of length q + 1.

Assume that the claim is true for some m ≥ 5 and consider a path P of order m + 1
that satisfies the assumptions. If {x1, u, ya, v2, v3, v4, v5} induces a P7, this contradicts G
belonging to the family F(P7, n+ 1), since neither x1 nor ya is super-heavy (by Claims 5.2
and 5.31). Hence, there is an edge in G[{ya, v2, v3, v4, v5}] that does not belong to the path
P . This edge creates a shorter path, of length at least m− 2, that satisfies the assumptions
of the Claim. It follows that we can obtain [q + 1, q +m− 4]-cycles in the desired manner.
Obviously, C ′′ = yaP

+ya+p+1C
′+ya is a cycle of length q+m− 1. To obtain cycles of lengths

q +m− 3 and q +m− 2 use chords of C ′′ as described in the case of m = 5.

From now on let yj denote the neighbour of u in H2 with the highest index.

Claim 5.35. j ≤ h2 − 3 and yj is adjacent neither to yh2 nor yh2−1.
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Proof. Suppose the first part of the Claim is not true. Then j ∈ {h2−2, h2−1, h2} and there
is one of the cycles uyh2−2yh2−1yh2vxh1u, uyh2−1yh2vxh1u or uyh2vxh1u in G. Let C ′ denote
that cycle. Neighbours of u both in H1 and in H2 induce cliques (by Claims 5.6 and 5.32,
respectively), and so they can be appended to C ′, one-by-one. Let C ′′ be the cycle C ′ with
all neighbours of u appended to it. The remaining vertices are the non-neighbours of u in H2.
Let {y1, ..., ydH2 (u)} ⊂ H2 be the neighbours of u in H2 sorted by their indices in ascending
order. Applying Claim 5.34 to the cycle C ′′ and the set A = C[y1, y2] we obtain cycles
longer than C ′′ up to the cycle C ′′′ = y1C+y2C ′′+y1. Now we can apply Claim 5.34 to the
cycle C ′′′ and the set C[y2, y3]. Repeating this procedure up to the set C[ydH2 (u)−1, ydH2 (u)],
we finally arrive at the cycle C. It follows that there are [|C ′|, n]-cycles in G. Since |C ′| ≤ 6,
together with Claim 5.33 this implies that G is pancyclic, a contradiction.

If yj is adjacent to either yh2−1 or yh2 , the similar argument as presented above applied
to the cycle uyjyh2−1yh2vxh1u or uyjyh2vxh1u leads to the pancyclicity of G, contradicting
our assumptions. Note that Claim 5.34 can be also applied to the sets A = {yj+1, ..., yh2−2}
and A = {yj+1, ..., yh2−1}.

Consider now the neighbour of yj in H2 with the highest index. Let ym denote this
vertex. It follows from Claim 5.35 that m ≤ h2 − 2 and so it makes sense to consider also
the neighbour of ym in H2 with the highest index, say ym′ ∈ H2. Note that the choice of j,
m and m′ implies that the path xh1uyjymym′ is an induced one.

Claim 5.36. ym′y ∈ E(G) for every y ∈ C[ym′+1, yh2 ].

Proof. Assume the contrary and let G′ = G[C[ym′ , yh2 ]]. It follows that there are vertices y′,
y′′ ∈ C[ym′ , yh2 ] such that the set {ym′ , y′, y′′} induces P3. By the choice of y′, y′′, j, m and
m′ it follows that xh1uyjymym′y′y′′ is an induced path P7. Since neither xh1 nor yj is super-
heavy, by Claims 5.2 and 5.31, this contradicts G belonging to the family F(P7, n+ 1).

Claim 5.37. Assume that the cycle C ′ = ymym′yh2C
+ym has length q. Let P = v1...vl be a

path with l ≥ 3, v1 = ym, vl = ym′ and vi ∈ C[ym, ym′ ] for i = 2, ..., l − 1.
Then one can obtain [q + 1, q + l − 2]-cycles by appending some of the vertices from P

to C ′ and omitting at most x1.

Proof. Since the Claim is obviously true for l = 3, consider l = 4. Then ymv2v3ym′C+ym is
a cycle of length q + 2 and ymv2v3ym′C+x2uC

+ym is a cycle of length q + 1.
For the proof by induction assume that the statement is true for some fixed l ≥ 4 and

for l − 1. Consider now a path P = v1...vl+1 satisfying the assumptions of the Claim. Since
G ∈ F(P7, n + 1) and neither x1 nor yj is super-heavy (by Claims 5.2 and 5.31), the set
{x1, u, yj, ym, v2, v3, v4} cannot induce a P7. Note that by the choice of j and m both
u and yj have no neighbours in the set C[ym+1, ym′ ]. It follows that there exists an edge
in G[{ym, v2, v3, v4}] that does not belong to the path P . This edge, say v′v′′, creates
a path P ′ = ymP

+v′v′′P+ym′ of length at most l or l − 1. By the induction hypothesis
there are [q + 1, q + l − 3]-cycles in G, created in the manner desired. Obviously, the cycle
ymP

+ym′C+ym has length q+ l− 1 and the cycle ymP
+ym′C+x2uC

+ym has length q+ l− 2.
By mathematical induction the claim is true.
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Claim 5.38. There are [7, n]-cycles in G.

Proof. Claim 5.36 implies that ym′yh2 ∈ E(G). Hence, C ′ = uyjymym′yh2vxh1u is a cycle C7.
Let {y1, ..., ydH2 (u)} denote the neighbours of u in H2 sorted by their indices in ascending
order.

Just as in the proof of Claim 5.35 we can extend the cycle C ′ by appending to it all
neighbours of u (since NH1 [u] and NH2 [u] induce cliques in G) and then all non-neighbours
of u that belong to one of the sets C[yl, yl+1] for l ∈ {1, ..., dH2(u)−1} or to the set C[yj, ym]
(by Claim 5.34), as well as those belonging to the set C[ym+1, ym′−1] (by Claim 5.36). To
the longest of just created cycles, that is the cycle yh2C

+ym′yh2 , we can then add all vertices
from the set C[ym′+1, yh2 ], also one-by-one, by Claim 5.37, thus arriving finally at the cycle
C.

It follows from Claims 5.33 and 5.38 that G is missing only cycles of length six. Since
the cycle C ′ = uyjymym′yh2vxh1u is of length seven, it follows that uv, ym′v /∈ E(G).

Claim 5.39. C ′ is an induced cycle.

Proof. To prove this fact we need to show that vym, vyj /∈ E(G) (by the choice of j, m, m′

and the fact that v is adjacent neither to u nor to ym′). If vym ∈ E(G), then vymyjux1xh1v

is a cycle C6 (since dH1(u) ≥ 2 and NH1 [u] induces a clique). Since n ≥ 14, uv /∈ E(G) and
u is super-heavy, it follows that u has at least four neighbours in H1 or H2. If vyj ∈ E(G),
these neighbours can be used to obtain a cycle C6 from the cycle uyjvxh1x1u. Hence, the
claim holds.

Claim 5.40. h1 ≤ 3.

Proof. First observe that if some vertex x ∈ H1 is not adjacent to v, then it follows from
the assumptions of this subcase and Claim 5.39 that the path xuyjymym′yh2v is an induced
one. Since neither x nor yj is super-heavy, by Claim 5.31 and Claim 5.6, respectively, this
contradicts G being a member of the family F(P7, n + 1). Hence, NH1(v) = NH1(u) = H1.
Now suppose that the claim is not true, i.e., suppose h1 ≥ 4. Since the neighbours of u in
H1 induce a clique, by Claim 5.6, and they are adjacent to v by the previous observation, it
follows that four of them together with u and v form a cycle C6. A contradiction.

Since n ≥ 14, u is super-heavy and uv /∈ E(G), Claim 5.40 implies that dH2(u) ≥ 5. But
then the subgraph of G induced by NH2 [u] is a clique of order at least six. Hence, there is a
cycle of length six in G. This final contradiction completes the proof.
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6 Proof of Theorem 1.32

For the convenience of the reader, we restate Theorem 1.32 below.

Theorem 1.32 (WW [48]) Let G be a 2-connected graph which is not a cycle and let S be
a connected graph with S 6= P3. Then G being claw-o1-heavy and S-c1-heavy implies G is
pancyclic if and only if S = P4, P5, Z1 or Z2.

Note that every P4-c1-heavy graph is P5-c1-heavy and that every P5-c1-heavy graph is
P5-o1-heavy. Furthermore, we notice that every Z2-c1-heavy graph is Z2-o1-heavy. Thus
Theorem 1.29 implies the following.

Corollary 6.1. Let G be a 2-connected, claw-o1-heavy graph that is not a cycle. If G is
S-c1-heavy, where S is one of P4, P5 or Z2, then G is pancyclic.

Observe that every claw-free and S-free graph is claw-o1-heavy and S-c1-heavy. By The-
orem 1.11 the only graphs S such that every {K1, 3, S}-free graph is pancyclic are P4, P5, Z1

or Z2. This proves the ’only if’ part of Theorem 1.32. In order to complete the proof of
Theorem 1.32 we only need to show that every claw-o1-heavy and Z1-c1-heavy graph other
than a cycle is pancyclic.

Let A = {v1, v2, v3, v4} be a subset of vertices of G. If G[A] is isomorphic to Z1, with
the set of its edges being {v1v2, v2v3, v3v1, v3v4}, we say that {v1, v2; v3, v4} induces a Z1.
Note that if {v1, v2; v3, v4} induces a Z1 in a Z1-c1-heavy graph G, then at least one of the
vertices v1 and v2 is super-heavy.

The following Lemma gives some information about the structure of claw-o1-heavy graphs.
Its proof was presented in [35]. We include it for completeness.

Lemma 6.1. Let G be a 2-connected, claw-o1-heavy graph of order n and let r, s ∈ V (G) be
vertices such that G− {r, s} is not connected. Then

1. G− {r, s} has exactly two components,

2. for any distinct neighbours x and x′ of r (s) belonging to the same component of
G− {r, s} either xx′ ∈ E(G) or else xx′ /∈ E(G) and dG(x) + dG(x′) ≥ n+ 1.

Proof. We begin with a simple observation: if two non-adjacent vertices x and y of G have
no more than two common neighbours, then dG(x) + dG(y) ≤ (n − 2) + 2 = n. Now for
the proof of 1. assume that G1, G2 and G3 are three of the components of G− {r, s}. Let
x1, x2 and x3 be neighbours of r in G1, G2 and G3, respectively. Since x1 and x2 are not
adjacent and they have at most two common neighbours, namely r and s, it follows from
the previous observation that dG(x1) + dG(x2) ≤ n. Similarly, dG(x1) + dG(x3) ≤ n and
dG(x2) + dG(x3) ≤ n. Since {r; x1, x2, x3} induces a claw in G, this contradicts G being
claw-o1-heavy. Thus G− {r, s} has exactly two components.

Let x and x′ be neighbours of r belonging to the same component of G− {r, s}. Recall
that for any neighbour x′′ of r from the other component we have dG(x) + dG(x′′) ≤ n and
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dG(x′) + dG(x′′) ≤ n. Assume that x and x′ are not adjacent. Since the set {r; x, x′, x′′}
induces a claw in G and G is claw-o1-heavy, it follows from the previous observation that
dG(x) + dG(x′) ≥ n+ 1. Thus 2. holds.

Now we are ready to present the proof of Theorem 1.32.

Proof of Theorem 1.32: Theorem 1.32 will be proved by contradiction. Suppose that
a graph G of order n satisfies the assumptions of the theorem but is not pancyclic. By
Corollary 6.1 we assume that G is claw-o1-heavy and Z1-c1-heavy. It follows from Theorem
1.11 that there is either an induced claw or an induced Z1 in G, implying that there is a super
heavy vertex u ∈ V (G). Consider G′ = G−u. Note that G′ is claw-o-heavy and Z1-c-heavy.
If G′ is two-connected, then it is hamiltonian by Theorem 1.31 and so G is pancyclic by
Lemma 2.1, a contradiction. Hence, there is a vertex v ∈ V (G) such that G− {u, v} is not
connected. Lemma 6.1 implies that G − {u, v} consists of exactly two components. Note
that G is hamiltonian by Theorem 1.31. Let C = uy1...yh2vxh1 ...x1u be a hamiltonian cycle
in G, where H1 = {x1, ..., xh1} and H2 = {y1, ..., yh2} are the components of G − {u, v}.
Without loss of generality assume h1 ≤ h2.

First we provide some information about H1.

Claim 6.1. There are no super-heavy vertices in H1.

Proof. Consider a vertex x ∈ H1. Clearly, its neighbourhood is a subset of the set (H1 −
x) ∪ {u, v}. Since h1 ≤ h2, we have h1 ≤ (n− 2)/2 and so dG(x) ≤ n/2.

With the next two claims we establish all information about the neighbourhood of u in
G that is needed to complete the proof.

Claim 6.2. NH1 [u] induces a clique in G.

Proof. Since the statement is obvious for h1 = 1 and h1 = 2, assume h1 ≥ 3. By Claim 6.1
there are no two vertices in H1 with sum of degrees greater than n. The Claim follows from
Lemma 6.1.

Claim 6.3. Every neighbour of u in H2 other than y1 is super-heavy.

Proof. Let y be a neighbour of u in H2 other than y1. Note that y1 is not super-heavy, since
otherwise dG(u) + dG(y1) ≥ n + 1 and G would be pancyclic by Lemma 1.4. First assume
that y1y /∈ E(G). It follows from Lemma 6.1 that dG(y1) + dG(y) ≥ n + 1. Since y1 is not
super-heavy, in order for this inequality to be satisfied y must be super-heavy.

Now assume that y is adjacent to y1. Since {y, y1; u, x1} induces a Z1 and G is Z1-c1-
heavy, it follows that y is a super-heavy vertex.

Note that if u has at least two neighbours in H1, then {x, x′;u, y1} induces Z1 for any
two x, x′ ∈ NH1(u), by Claim 6.2. Since G is Z1-c1-heavy, either x or x′ is super-heavy.
This contradicts Claim 6.1. Thus dH1(u) = 1. This implies that dH2(u) ≥ (n − 3)/2. Since
there are at most (n − 3) vertices in H2 and every neighbour of u in H2 other than y1 is
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super-heavy, by Claim 6.3, there is a super-heavy pair of vertices in G with distance along
the cycle C at most two. Hence, G is pancyclic by Lemma 1.4 or 2.5. This final contradiction
completes the proof.
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